Green and golden seaweed tides on the rise


Sudden beaching of huge seaweed masses smother the coastline and form rotting piles on the shore. The number of reports of these events in previously unaffected areas has increased worldwide in recent years. These 'seaweed tides' can harm tourism-based economies, smother aquaculture operations or disrupt traditional artisanal fisheries. Coastal eutrophication is the obvious, ultimate explanation for the increase in seaweed biomass, but the proximate processes that are responsible for individual beaching events are complex and require dedicated study to develop effective mitigation strategies. Harvesting the macroalgae, a valuable raw material, before they beach could well be developed into an effective solution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Green and golden tides.


Figure 2: Ulva green tide development in a shallow coastal environment.
Figure 3: Distribution of drifting Sargassum rafts derived from MERIS satellite images across the central Atlantic Ocean.


  1. 1

    Fletcher, R. T. in Marine Benthic Vegetation - Recent Changes and the Effects of Eutrophication (eds Schramm, W. & Nienhuis, P. H.) 7–43 (Springer, 1996).

    Google Scholar 

  2. 2

    Valiela, I. et al. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr. 42, 1105–1118 (1997).

    ADS  Article  Google Scholar 

  3. 3

    Ye, N. H. et al. 'Green tides' are overwhelming the coastline of our blue planet: taking the world's largest example. Ecol. Res. 26, 477–485 (2011).

    Article  Google Scholar 

  4. 4

    Norkko, A. & Bonsdorff, E. Population responses of coastal zoobenthos to stress induced by drifting algal mats. Mar. Ecol. Prog. Ser. 140, 141–151 (1996).

    ADS  Article  Google Scholar 

  5. 5

    Norkko, A. & Bonsdorff, E. Rapid zoobenthic community responses to accumulations of drifting algae. Mar. Ecol. Prog. Ser. 131, 143–157 (1996).

    ADS  Article  Google Scholar 

  6. 6

    Arroyo, N. L., Aarnio, K., Mäensivu, M. & Bonsdorff, E. Drifting filamentous algal mats disturb sediment fauna: Impacts on macro–meiofaunal interactions. J. Exp. Mar. Biol. Ecol. 420–421, 77–90 (2012).

    Article  Google Scholar 

  7. 7

    Hayden, H. S. et al. Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur. J. Phycol. 38, 277–294 (2003).

    Article  Google Scholar 

  8. 8

    Blomster, J. et al. Novel morphology in Enteromorpha (Ulvophyceae) forming green tides. Am. J. Bot. 89, 1756–1763 (2002).

    Article  Google Scholar 

  9. 9

    Laffoley, D. A. et al. The Protection and Management of the Sargasso Sea: The Golden Floating Rainforest of the Atlantic Ocean 1–44 (Washington, 2011).

    Google Scholar 

  10. 10

    Lapointe, B. E. A comparison of nutrient-limited productivity in Sargassum natans from neritic vs. oceanic waters of the western North Atlantic Ocean. Limnol. Oceanogr. 40, 625–633 (1995).

    CAS  ADS  Article  Google Scholar 

  11. 11

    Teichberg, M. et al. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp. Glob. Change Biol. 16, 2624–2637 (2010).

    Google Scholar 

  12. 12

    van Beusekom, J. E. E. et al. Quality Status Report 2009. Wadden Sea Ecosystem No. 25 (eds Marencic, H. & de Vlas, J.) 1–21 (Common Wadden Sea Secretariat, Trilateral Monitoring and Assessment Group, 2009).

    Google Scholar 

  13. 13

    Charlier, R. H., Morand, P. & Finkl, C. W. How Brittany and Florida coasts cope with green tides. Int. J. Environ. Stud. 65, 191–208 (2008).

    Article  Google Scholar 

  14. 14

    Saltmarsh, M. A battle between economic mainstays in Brittany. (New York Times, 2010).

    Google Scholar 

  15. 15

    Liu, D. et al. The world's largest macroalgal bloom in the Yellow Sea, China: formation and implications. Estuar. Coast. Shelf Sci. 129, 2–10 (2013).

    CAS  ADS  Article  Google Scholar 

  16. 16

    Sun, S. et al. Emerging challenges: Massive green algae blooms in the Yellow Sea. Nature Preced. (2008).

  17. 17

    Keesing, J. K., Liu, D., Fearns, P. & Garcia, R. Inter- and intra-annual patterns of Ulva prolifera green tides in the Yellow Sea during 2007–2009, their origin and relationship to the expansion of coastal seaweed aquaculture in China. Mar. Pollut. Bull. 62, 1169–1182 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Gao, S. et al. A strategy for the proliferation of Ulva prolifera, main causative species of green tides, with formation of sporangia by fragmentation. PLoS ONE 5, e8571 (2010).

    ADS  Article  Google Scholar 

  19. 19

    Hu, C. et al. On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J. Geophys. Res. 115, C05017 (2010).

    ADS  Article  Google Scholar 

  20. 20

    Liu, F. et al. Understanding the recurrent large-scale green tide in the Yellow Sea: temporal and spatial correlations between multiple geographical, aquacultural and biological factors. Mar. Environ. Res. 83, 38–47 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Jacobs, A. With surf like turf, huge algae bloom befouls China coast. (New York Times, 2013).

    Google Scholar 

  22. 22

    Yabe, T. et al. Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan. Limnology 10, 239–245 (2009).

    Article  Google Scholar 

  23. 23

    Sfriso, A. & Marcomini, A. Decline of Ulva growth in the lagoon of Venice. Bioresour. Technol. 58, 299–307 (1996).

    CAS  Article  Google Scholar 

  24. 24

    Facca, C., Pellegrino, N., Ceoldo, S., Tibaldo, M. & Sfriso, A. Trophic conditions in the waters of the Venice lagoon (Northern Adriatic Sea, Italy). Open Oceanogr. J. 5, 1–13 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Geertz-Hansen, O., Sand-Jensen, K., Hansen, D. F. & Christiansen, A. Growth and grazing control of abundance of the marine macroalga, Ulva lactuca L. in a eutrophic Danish estuary. Aquat. Bot. 46, 101–109 (1993).

    Article  Google Scholar 

  26. 26

    Kamermans, P. et al. Effect of grazing by isopods and amphipods on growth of Ulva spp. (Chlorophyta). Aquat. Ecol. 36, 425–433 (2002).

    Article  Google Scholar 

  27. 27

    Bäck, S., Lehvo, A. & Blomster, J. Mass occurrence of unattached Enteromorpha intestinalis on the Finnish Baltic Sea coast. Ann. Bot. Fenn. 37, 155–161 (2000).

    Google Scholar 

  28. 28

    Lin, H. Z. et al. Genetic and marine cyclonic eddy analyses on the largest macroalgal bloom in the world. Environ. Sci. Technol. 45, 5996–6002 (2011).

    CAS  ADS  Article  Google Scholar 

  29. 29

    Zhang, X. W. et al. Somatic cells serve as a potential propagule bank of Enteromorpha prolifera forming a green tide in the Yellow Sea, China. J. Appl. Phycol. 22, 173–180 (2010).

    Article  Google Scholar 

  30. 30

    Zhang, J. H. et al. Growth characteristics and reproductive capability of green tide algae in Rudong coast, China. J. Appl. Phycol. 25, 795–803 (2013).

    Article  Google Scholar 

  31. 31

    Viscusi, G. Fear of noxious 'green tides' drives tourists from beaches of Brittany (Boston Globe, 2011).

    Google Scholar 

  32. 32

    Diaz, M., Darnhofer, I., Darrot, C. & Beuret, J.-E. Green tides in Brittany: What can we learn about niche–regime interactions? Environ. Innov. Soc. Transitions 8, 62–75 (2013).

    Article  Google Scholar 

  33. 33

    Samuel, H. French protesters say Brittany will be François Hollande's 'cemetery' (The Telegraph, 2013).

    Google Scholar 

  34. 34

    Jing, L. Seaweed farming linked to Qingdao's green tide of algae (South China Morning Post, 2013).

    Google Scholar 

  35. 35

    Williams, A. & Feagin, R. Sargassum as a natural solution to enhance dune plant growth. Environ. Manage. 46, 738–747 (2010).

    ADS  Article  Google Scholar 

  36. 36

    Gower, J. & King, S. Distribution of floating Sargassum in the Gulf of Mexico and the Atlantic Ocean mapped using MERIS. Int. J. Remote Sens. 32, 1917–1929 (2011).

    ADS  Article  Google Scholar 

  37. 37

    Johnson, D. L. & Richardson, P. L. On the wind-induced sinking of Sargassum. J. Exp. Mar. Biol. Ecol. 28, 255–267 (1977).

    Article  Google Scholar 

  38. 38

    Hemphill, A. Change is in the air – seaweed, seaweed everywhere! (Arlo Hemphill, 2013).

    Google Scholar 

  39. 39

    Gower, J., Young, E. & King, S. Satellite images suggest a new Sargassum source region in 2011. Remote Sens. Lett. 4, 764–773 (2013).

    Article  Google Scholar 

  40. 40

    Ackah-Baidoo, A. Fishing in troubled waters: oil production, seaweed and community-level grievances in the Western Region of Ghana. Community Dev. J. 48, 406–420 (2013).

    Article  Google Scholar 

  41. 41

    McDiarmid, J. Western Ghana's fisherfolk starve amid algae infestation (IPS, 2011).

    Google Scholar 

  42. 42

    Froese, R. & Pauly, D. (eds). FishBase. (Fishbase, 2013).

  43. 43

    Anderson, D. M., Cembella, A. D. & Hallegraeff, G. M. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu. Rev. Mar. Sci. 4, 143–176 (2012).

    ADS  Article  Google Scholar 

  44. 44

    GEOHAB. Global Ecology and Oceanography of Harmful Algal Blooms (SCOR and IOC, 2001).

  45. 45

    Nelson, T. A., Lee, D. J. & Smith, B. C. Are “green tides” harmful algal blooms? Toxic properties of water-soluble extracts from two bloom-forming macroalgae, Ulva fenestrata and Ulvaria obscura (Ulvophyceae). J. Phycol. 39, 874–879 (2003).

    CAS  Article  Google Scholar 

  46. 46

    Harder, T., Dobretsov, S. & Qian, P.-Y. Waterborne polar macromolecules act as algal antifoulants in the seaweed Ulva reticulata. Mar. Ecol. Prog. Ser. 274, 133–141 (2004).

    CAS  ADS  Article  Google Scholar 

  47. 47

    Algae Industry Magazine. Olmix opens algae biorefinery in Brittany (Algae Industry Magazine, 2013).

  48. 48

    South Atlantic Fishery Management Council. Fishery Management Plan For Pelagic Sargassum Habitat Of The South Atlantic Region (NOAA, 2002).

  49. 49

    Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 279, 860–863 (1998).

    CAS  ADS  Article  Google Scholar 

Download references


We thank C. Barroca, A. Huckbody, E. Fuller and M. Freling for sharing their photographs and experience, I. Valiela for comments on an earlier draft and P. Kullberg for updates.

Author information



Corresponding authors

Correspondence to Victor Smetacek or Adriana Zingone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smetacek, V., Zingone, A. Green and golden seaweed tides on the rise. Nature 504, 84–88 (2013).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing