Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Offshore fresh groundwater reserves as a global phenomenon

Abstract

The flow of terrestrial groundwater to the sea is an important natural component of the hydrological cycle. This process, however, does not explain the large volumes of low-salinity groundwater that are found below continental shelves. There is mounting evidence for the global occurrence of offshore fresh and brackish groundwater reserves. The potential use of these non-renewable reserves as a freshwater resource provides a clear incentive for future research. But the scope for continental shelf hydrogeology is broader and we envisage that it can contribute to the advancement of other scientific disciplines, in particular sedimentology and marine geochemistry.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: World map of topography and bathymetry showing known occurrences of fresh and brackish offshore groundwater.
Figure 2: Global overview of inferred key metrics and cross sections of well-characterised vast meteoric groundwater reserves.
Figure 3: The geology and the key groundwater flow, and dissolved salt transport processes below the continental shelf.

References

  1. Fisher, A. T. Marine hydrogeology: recent accomplishments and future opportunities. Hydrogeol. J. 13, 69–97 (2005).

    ADS  Google Scholar 

  2. Faure, H., Walter, R. C. & Grant, D. R. The coastal oasis: ice age springs on emerged continental shelves. Global Planet. Change 33, 47–56 (2002). This article postulates that groundwater discharge and springs were widespread on continental shelves during sea-level low-stands.

    ADS  Google Scholar 

  3. Lambeck, K. & Chappell, J. Sea level change through the last glacial cycle. Science 292, 679–686 (2001).

    ADS  CAS  PubMed  Google Scholar 

  4. Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).

    ADS  CAS  PubMed  Google Scholar 

  5. Soulet, G. et al. Glacial hydrologic conditions in the Black Sea reconstructed using geochemical pore water profiles. Earth Planet. Sci. Lett. 296, 57–66 (2010).

    ADS  CAS  Google Scholar 

  6. Voris, H. K. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J. Biogeogr. 27, 1153–1167 (2000).

    Google Scholar 

  7. Edmunds, W. M. et al. in Palaeowaters in Coastal Europe: Evolution of Groundwater Since the Late Pleistocene, Vol. 189 (eds Edmunds, W. M. & Milne, C. J.) 289–311 (Geological Society London, 2001).

    Google Scholar 

  8. Essaid, H. I. A multilayered sharp interface model of coupled fresh-water and saltwater flow in coastal systems — model development and application. Wat. Resour. Res. 26, 1431–1454 (1990).

    ADS  Google Scholar 

  9. Harrar, W. G., Williams, A. T., Barker, J. A. & Van Camp, M. in Palaeowaters in Coastal Europe: Evolution of Groundwater Since the Late Pleistocene, Vol. 189 (eds Edmunds, W. M. & Milne, C. J.) 213–229 (Geological Society London, 2001).

    Google Scholar 

  10. Konikow, L. F. Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys. Res. Lett. 38, L17401 (2011).

    ADS  Google Scholar 

  11. Lettenmaier, D. P. & Milly, P. C. D. Land waters and sea level. Nature Geosci. 2, 452–454 (2009).

    ADS  CAS  Google Scholar 

  12. Adkins, J. F., McIntyre, K. & Schrag, D. P. The salinity, temperature, and Δ18 O of the glacial deep ocean. Science 298, 1769–1773 (2002).

    ADS  CAS  PubMed  Google Scholar 

  13. Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B. & Moulin, P. Reverse osmosis desalination: water sources, technology, and today's challenges. Water Res. 43, 2317–2348 (2009).

    CAS  PubMed  Google Scholar 

  14. Post, V. E. A. Fresh and saline groundwater interaction in coastal aquifers: Is our technology ready for the problems ahead? Hydrogeol. J. 13, 120–123 (2005).

    ADS  CAS  Google Scholar 

  15. Stuyfzand, P. J. & Raat, K. J. Benefits and hurdles of using brackish groundwater as a drinking water source in the Netherlands. Hydrogeol. J. 18, 117–130 (2010).

    ADS  CAS  Google Scholar 

  16. Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    ADS  CAS  PubMed  Google Scholar 

  17. Bakken, T. H., Ruden, F. & Mangset, L. E. Submarine groundwater: a new concept for the supply of drinking water. Water Resour. Manage. 26, 1015–1026 (2012). This is the first article to highlight the potential of submarine groundwater as a source for drinking water.

    Google Scholar 

  18. Galloway, D. L. & Burbey, T. J. Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 19, 1459–1486 (2011).

    ADS  Google Scholar 

  19. Ferguson, G. & Gleeson, T. Vulnerability of coastal aquifers to groundwater use and climate change. Nature Clim. Change 2, 342–345 (2012).

    ADS  Google Scholar 

  20. Werner, A. D. et al. Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Resour. 51, 3–26 (2013).

    ADS  Google Scholar 

  21. Church, T. M. An underground route for the water cycle. Nature 380, 579–580 (1996). This article discusses the implications of the finding that submarine groundwater discharge is a significant component of the hydrological cycle.

    ADS  CAS  Google Scholar 

  22. Moore, W. S. The effect of submarine groundwater discharge on the ocean. Annu. Rev. Mar. Sci. 2, 59–88 (2010).

    ADS  Google Scholar 

  23. Taniguchi, M., Burnett, W. C., Cable, J. E. & Turner, J. V. Investigation of submarine groundwater discharge. Hydrol. Processes 16, 2115–2129 (2002).

    ADS  Google Scholar 

  24. Bratton, J. F. The three scales of submarine groundwater flow and discharge across passive continental margins. J. Geol. 118, 565–575 (2010).

    ADS  CAS  Google Scholar 

  25. Bakker, M. Analytic solutions for interface flow in combined confined and semi-confined, coastal aquifers. Adv. Water Resour. 29, 417–425 (2006).

    ADS  CAS  Google Scholar 

  26. Kooi, H. & Groen, J. Offshore continuation of coastal groundwater systems: predictions using sharp-interface approximations and variable-density flow modelling. J. Hydrol. 246, 19–35 (2001). This was the first study to provide quantitative constraints on the offshore extension of active submarine groundwater discharge.

    ADS  Google Scholar 

  27. Krantz, D. E., Manheim, F. T., Bratton, J. F. & Phelan, D. J. Hydrogeologic setting and ground water flow beneath a section of Indian River Bay, Delaware. Ground Water 42, 1035–1051 (2004).

    Google Scholar 

  28. Johnston, R. H. The salt-water–fresh-water interface in the tertiary limestone aquifer, southeast Atlantic outer continental-shelf of the USA. J. Hydrol. 61, 239–249 (1983).

    ADS  CAS  Google Scholar 

  29. Person, M. et al. Pleistocene hydrogeology of the Atlantic continental shelf, New England. Geol. Soc. Am. Bull. 115, 1324–1343 (2003).

    ADS  Google Scholar 

  30. Malone, M. J., Claypool, G., Martin, J. B. & Dickens, G. R. Variable methane fluxes in shallow marine systems over geologic time — the composition and origin of pore waters and authigenic carbonates on the New Jersey shelf. Marine Geology 189, 175–196 (2002).

    ADS  CAS  Google Scholar 

  31. van Geldern, R. et al. Stable isotope geochemistry of pore waters and marine sediments from the New Jersey shelf: methane formation and fluid origin. Geosphere 9, 96–112 (2013). This study demonstrates previously unrecognized salinity stratification based on high-resolution pore-water data from the New Jersey continental shelf.

    Google Scholar 

  32. Hathaway, J. C. et al. United-States geological survey core drilling on the Atlantic shelf. Science 206, 515–527 (1979). This is the seminal paper that demonstrated the widespread occurrence of low-salinity groundwater below the continental shelf of the eastern United States.

    ADS  CAS  PubMed  Google Scholar 

  33. Person, M. et al. Use of a vertical Δ 18O profile to constrain hydraulic properties and recharge rates across a glacio-lacustrine unit, Nantucket Island, Massachusetts, USA. Hydrogeol. J. 20, 325–336 (2012).

    ADS  CAS  Google Scholar 

  34. Groen, J., Post, V. E. A., Kooi, H. & Hemker, C. J. in Tracers and Modelling in Hydrogeology (ed. Dassargues, A.) 417–424 (2000).

    Google Scholar 

  35. Groen, J., Velstra, J. & Meesters, A. Salinization processes in paleowaters in coastal sediments of Suriname: evidence from Δ 7Cl analysis and diffusion modelling. J. Hydrol. 234, 1–20 (2000).

    ADS  CAS  Google Scholar 

  36. Varma, S. & Michael, K. Impact of multi-purpose aquifer utilisation on a variable-density groundwater flow system in the Gippsland Basin, Australia. Hydrogeol. J. 20, 119–134 (2012).

    ADS  Google Scholar 

  37. Maathuis, H., Mak, W. & Adi, S. in Groundwater: Past Achievements and Future Challenges (ed. Sililo, O.) 209–213 (Balkema, 2000).

    Google Scholar 

  38. Oteri, A. U. Electric log interpretation for the evaluation of salt water intrusion in the eastern Niger Delta. Hydro. Sci. J. 33, 19–30 (1988).

    CAS  Google Scholar 

  39. Grasby, S. E., Chen, Z., Issler, D. & Stasiuk, L. Evidence for deep anaerobic biodegradation associated with rapid sedimentation and burial in the Beaufort-Mackenzie basin, Canada. Appl. Geochem. 24, 536–542 (2009).

    CAS  Google Scholar 

  40. Zhang, Z., Zou, L., Cui, R. & Wang, L. Study of the storage conditions of submarine freshwater resources and the submarine freshwater resources at north of Zhoushan sea area. Marine Sci. Bull. 30, 47–52 (2011).

    CAS  Google Scholar 

  41. Davies, C. P. N. Hydrocarbon evolution of the Bredasdorp basin, Offshore South Africa: from Source to Reservoir. PhD thesis, Univ. Stellenbosch (1997).

    Google Scholar 

  42. Hennig, A. & Otto, C. A Hydrodynamic Characterisation of the Offshore Vlaming Sub-basin. (CO2CRC, 2005).

    Google Scholar 

  43. Post, V. E. A., Hooijboer, A. E. J., Groen, J., Gieske, J. M. J. & Kooi, H. in Proc. 16th Salt Water Intrusion Meeting, Wolin Island, Poland (ed. Sadurski, A.) (SWIM, 2000).

    Google Scholar 

  44. Kriete, C., Suckow, A. & Harazim, B. Pleistocene meteoric pore water in dated marine sediment cores off Callao, Peru. Estuar. Coast. Shelf Sci. 59, 499–510 (2004).

    ADS  CAS  Google Scholar 

  45. Expedition 317 Scientists. Site U1353. Proc. Integr. Ocean Dril. Program 317, 103 (2011).

  46. Middelburg, J. J. & de Lange, G. J. The isolation of Kau Bay during the last glaciation: direct evidence from interstitial water chlorinity. Neth. J. Sea Res. 24, 615–622 (1989).

    Google Scholar 

  47. Meisler, H., Leahy, P. P. & Knobel, L. L. Effect of Eustatic Sea-Level Changes on Saltwater–Freshwater relations in the Northern Atlantic coastal plain. (U.S. Geological Survey, 1984).

    Google Scholar 

  48. Cohen, D. et al. Origin and extent of fresh paleowaters on the Atlantic Continental Shelf, USA. Ground Water 48, 143–158 (2010).

    ADS  CAS  PubMed  Google Scholar 

  49. Morrissey, S. K., Clark, J. F., Bennett, M., Richardson, E. & Stute, M. Groundwater reorganization in the Floridan aquifer following Holocene sea-level rise. Nature Geosci. 3, 683–687 (2010).

    ADS  CAS  Google Scholar 

  50. Love, A. J. et al. Groundwater residence time and paleohydrology in the Otway basin, south Australia — H-2, O-18 and C-14 data. J. Hydrol. 153, 157–187 (1994).

    ADS  Google Scholar 

  51. Sanford, W. E. & Buapeng, S. Assesment of a groundwater flow model of the Bangkok basin, Thailand, using carbon-14-based ages and paleohydrology. Hydrogeol. J. 4, 26–40 (1996).

    ADS  Google Scholar 

  52. Robb, J. M. Spring sapping on the lower continental slope, offshore New Jersey. Geology 12, 278–282 (1984).

    ADS  Google Scholar 

  53. DeFoor, W. et al. Ice sheet-derived submarine groundwater discharge on Greenland's continental shelf. Water Resour. Res. http://dx.doi.org/10.1029/2011WR010536 (28 July 2011).

  54. Mann, R. & Gieskes, J. M. Interstitial water studies, Leg 28. Initial Rep. Deep Sea Drill. Proj. 28, 805–814 (1975).

    CAS  Google Scholar 

  55. Chambers, S. R. Solute distributions and stable isotope chemistry of interstitial waters from Prydz Bay, Antarctica. Proc. Ocean Drill. Program 119, 375–392 (1991).

    CAS  Google Scholar 

  56. Edmunds, W. M. in Isotopes in the Water Cycle: Past, Present and Future of a Developing Science, 341–352 (Springer, 2005).

    Google Scholar 

  57. De Carlo, E. H. Geochemistry of pore water and sediments recovered from the Exmouth Plateau. Proc. Ocean Drill. Program 122, 295–308 (1992).

    CAS  Google Scholar 

  58. Kastner, M., Elderfield, H. & Martin, J. B. Fluids in convergent margins — what do we know about their composition, origin, role in diagenesis and importance for oceanic chemical fluxes? Phil. Trans. R. Soc. A 335, 243–259 (1991).

    ADS  CAS  Google Scholar 

  59. Kastner, M. et al. Diagenesis and interstitial-water chemistry at the Peruvian continental margin; major constituents and strontium isotopes. Proc. Ocean Drill. Program 112, 413–440 (1990).

    Google Scholar 

  60. Mora, G. Isotope-tracking of pore water freshening in the fore-arc basin of the Japan Trench. Mar. Geol. 219, 71–79 (2005).

    ADS  CAS  Google Scholar 

  61. Gieskes, J. M., Lawrence, J. R. & Galleisky, G. Interstitial water studies, Leg 38. Initial Rep. Deep Sea Drill. Proj. 38–41, 121–133 (1978).

    Google Scholar 

  62. Exon, N. F. et al. Leg 189 Summary. Proc. Ocean Drill. Program 189, 1–98 (2001).

    Google Scholar 

  63. Hesse, R. Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface — What have we learned in the past decade? Earth-Science Reviews 61, 149–179 (2003).

    ADS  CAS  Google Scholar 

  64. Post, V. E. A. & Kooi, H. Rates of salinization by free convection in high-permeability sediments: insights from numerical modeling and application to the Dutch coastal area. Hydrogeol. J. 11, 549–559 (2003).

    ADS  Google Scholar 

  65. Kooi, H., Groen, J. & Leijnse, A. Modes of seawater intrusion during transgressions. Wat. Resour. Res. 36, 3581–3589 (2000). This was the first study to evaluate the modes of salinization of continental shelf aquifers during sea-level rise.

    ADS  Google Scholar 

  66. Hughes, J. D., Vacher, H. L. & Sanford, W. Temporal response of hydraulic head, temperature, and chloride concentrations to sea-level changes, Floridan aquifer system, USA. Hydrogeol. J. 17, 793–815 (2009).

    ADS  CAS  Google Scholar 

  67. Mulligan, A. E., Evans, R. L. & Lizarralde, D. The role of paleochannels in groundwater/seawater exchange. J. Hydrol. 335, 313–329 (2007).

    ADS  Google Scholar 

  68. Dugan, B. & Flemings, P. B. Overpressure and fluid flow in the New Jersey continental slope: Implications for slope failure and cold seeps. Science 289, 288–291 (2000).

    ADS  CAS  PubMed  Google Scholar 

  69. Wilson, A. M. The occurrence and chemical implications of geothermal convection of seawater in continental shelves. Geophys. Res. Lett. 30, 2127 (2003).

    ADS  Google Scholar 

  70. Edmunds, W. M. et al. in Palaeowaters in Coastal Europe: Evolution of Groundwater Since the Late Pleistocene, Vol. 189 (eds Edmunds, W. M. & Milne, C. J.) 71–92 (Geological Society London, 2001).

    Google Scholar 

  71. Condesso de Melo, M. T., Carreira Paquete, P. M. M. & Marques da Silva, M. A. in Palaeowaters in Coastal Europe: Evolution of Groundwater Since the Late Pleistocene, Vol. 189 (eds Edmunds, W. M. & Milne, C. J.) 139–154 (Geological Society London, 2001).

    Google Scholar 

  72. Hinsby, K. et al. in Palaeowaters in Coastal Europe: Evolution of Groundwater Since the Late Pleistocene, Vol. 189 (eds Edmunds, W. M. & Milne, C. J.) 29–48 (Geological Society London, 2001).

    Google Scholar 

  73. Bakari, S. S. et al. Groundwater residence time and paleorecharge conditions in the deep confined aquifers of the coastal watershed, South-East Tanzania. J. Hydrol. 466–467, 127–140 (2012).

    Google Scholar 

  74. Sanford, W. E. Groundwater hydrology coastal flow. Nature Geosci. 3, 671–672 (2010).

    ADS  CAS  Google Scholar 

  75. Geyh, M. A. & Sofner, B. Groundwater analysis of environmental carbon and other isotopes from the Jakarta basin aquifer, Indonesia. Radiocarbon 31, 919–925 (1989).

    Google Scholar 

  76. Weyhenmeyer, C. E. et al. Cool glacial temperatures and changes in moisture source recorded in Oman groundwaters. Science 287, 842–845 (2000).

    ADS  CAS  PubMed  Google Scholar 

  77. Berner, E. K. & Berner, R. A. Global Water Cycle: Geochemistry and Environment. 397 (Prentice Hall, 1987).

    Google Scholar 

  78. Post, V. & Abarca, E. Saltwater and freshwater interactions in coastal aquifers. Hydrogeol. J. 18, 1–4 (2010).

    ADS  Google Scholar 

  79. Martínez, M. L. et al. The coasts of our world: ecological, economic and social importance. Ecol. Econ. 63, 254–272 (2007).

    Google Scholar 

  80. Appleyard, S. J., Angeloni, J. & Watkins, R. Arsenic-rich groundwater in an urban area experiencing drought and increasing population density, Perth, Australia. Appl. Geochem. 21, 83–97 (2006).

    CAS  Google Scholar 

  81. Aeschbach-Hertig, W. & Gleeson, T. Regional strategies for the accelerating global problem of groundwater depletion. Nature Geosci. 5, 853–861 (2012).

    ADS  CAS  Google Scholar 

  82. van der Gun, J. & Lipponen, A. Reconciling groundwater storage depletion due to pumping with sustainability. Sustainability 2, 3418–3435 (2010).

    Google Scholar 

  83. Barlow, P. M. Ground Water in FreshwaterSaltwater Environments of the Atlantic Coast (US Geological Survey, 2003).

    Google Scholar 

  84. Green, T. R. et al. Beneath the surface of global change: impacts of climate change on groundwater. J. Hydrol. 405, 532–560 (2011).

    ADS  Google Scholar 

  85. Berndt, C. Focused fluid flow in passive continental margins. Phil. Trans. R. Soc. A 363, 2855–2871 (2005).

    ADS  PubMed  Google Scholar 

  86. Schippers, A. et al. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433, 861–864 (2005).

    ADS  CAS  PubMed  Google Scholar 

  87. Xiao, S. & Knauth, L. P. Fossils come in to land. Nature 493, 28–29 (2013).

    ADS  PubMed  Google Scholar 

  88. Loosli, H. H. et al. in Palaeowaters in Coastal Europe: Evolution of Groundwater Since the Late Pleistocene, Vol. 189 (eds Edmunds, W. M. & Milne, C. J.) 193–212 (Geological Society London, 2001).

    Google Scholar 

  89. Bailey, G. N. & King, G. C. P. Dynamic landscapes and human dispersal patterns: tectonics, coastlines, and the reconstruction of human habitats. Quat. Sci. Rev. 30, 1533–1553 (2011).

    ADS  Google Scholar 

  90. Morad, S., Ketzer, J. M. & De Ros, L. F. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology 47, 95–120 (2000).

    CAS  Google Scholar 

  91. Screaton, E. J. Recent advances in subseafloor hydrogeology: focus on basement-sediment interactions, subduction zones, and continental slopes. Hydrogeol. J. 18, 1547–1570 (2010).

    ADS  Google Scholar 

  92. Constable, S. & Srnka, L. J. An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration. Geophysics 72, WA3–WA12 (2007).

    Google Scholar 

  93. Hoefel, F. G. & Evans, R. L. Impact of low salinity porewater on seafloor electromagnetic data: a means of detecting submarine groundwater discharge? Estuar. Coast. Shelf Sci. 52, 179–189 (2001).

    ADS  CAS  Google Scholar 

  94. Mountain, G. S., Proust, J. N., McInroy, D. & the Expedition 313 scientists in Proc. IODP 313 (IODP, 2009).

    Google Scholar 

  95. Mansurbeg, H. et al. Meteoric-water diagenesis in late Cretaceous canyon-fill turbidite reservoirs from the Espirito Santo Basin, eastern Brazil. Mar. Pet. Geol. 37, 7–26 (2012).

    CAS  Google Scholar 

  96. Lundegard, P. D. & Trevena, A. S. Sandstone diagenesis in the Pattani basin (Gulf of Thailand) — history of water rock interaction and comparison with the Gulf of Mexico. Appl. Geochem. 5, 669–685 (1990).

    Google Scholar 

  97. Bazin, B., Brosse, E. & Sommer, F. Chemistry of oil-field brines in relation to diagenesis of reservoirs 1: use of mineral stability fields to reconstruct in situ water composition. Example of the Mahakam basin. Mar. Pet. Geol. 14, 481–495 (1997).

    CAS  Google Scholar 

  98. Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis 19 (NOAA, 2009).

    Google Scholar 

  99. Bradley, D. C. Passive margins through earth history. Earth Sci. Rev. 91, 1–26 (2008).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent E.A. Post.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprint.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Post, V., Groen, J., Kooi, H. et al. Offshore fresh groundwater reserves as a global phenomenon. Nature 504, 71–78 (2013). https://doi.org/10.1038/nature12858

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12858

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing