Abstract
Coastal populations and wetlands have been intertwined for centuries, whereby humans both influence and depend on the extensive ecosystem services that wetlands provide. Although coastal wetlands have long been considered vulnerable to sea-level rise, recent work has identified fascinating feedbacks between plant growth and geomorphology that allow wetlands to actively resist the deleterious effects of sea-level rise. Humans alter the strength of these feedbacks by changing the climate, nutrient inputs, sediment delivery and subsidence rates. Whether wetlands continue to survive sea-level rise depends largely on how human impacts interact with rapid sea-level rise, and socio-economic factors that influence transgression into adjacent uplands.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Short-term sedimentation dynamics in mesotidal marshes
Scientific Reports Open Access 02 February 2023
-
Coastal engineering infrastructure impacts Blue Carbon habitats distribution and ecosystem functions
Scientific Reports Open Access 11 November 2022
-
In-situ loading experiments reveal how the subsurface affects coastal marsh survival
Communications Earth & Environment Open Access 03 November 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

MATTHEW KIRWAN; PATRICK MEGONIGAL


ILKA FELLER/LIGHTHAWK; JIM TITUS; FRIDA SIDIK; ANDY BALDWIN
References
Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).
Huang, Y. et al. Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect. Glob. Change Biol. 16, 680–695 (2010).
Pendleton, L. et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012). This article estimates that half of global wetlands have been lost due to direct human conversion.
Mcleod, E. et al. A blueprint for blue carbon: towards an improved understanding of the role of vegetated coastal habitats in sequestering CO2 . Front. Ecol. Environ 9, 552–560 (2011).
Craft, C. et al. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front. Ecol. Environ. 7, 73–78 (2009).
Kirwan, M. L. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37, L23401 (2010). This article demonstrates that the maximum rate of sea-level rise a marsh can survive is a linear function of sediment supply and tidal range.
Fagherazzi, S. et al. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev. Geophys. 50, RG1002 (2012).
French, J. Tidal marsh sedimentation and resilience to environmental change: exploratory modeling of tidal, sea-level, and sediment supply forcing in predominantly allochthonous systems. Mar. Geol. 235, 119–136 (2006).
Cahoon, D. R. et al. in Wetlands and Natural Resource Management: Ecological Studies, Vol. 190 (eds Verhoeven, J. T. A., Beltman, B., Bobbink, R. & Whigham, D. F.) 271–292 (Springer, 2006). This provides a summary of elevation trends and the factors that control them from marshes around the world.
Rampino, M. R. & Sanders, J. E. Episodic growth of Holocene tidal marshes in the northeastern United States: a possible indicator of eustatic sea-level fluctuations. Geology 9, 63–67 (1981).
Kemp, A. C. et al. Climate related sea-level variations over the past two millennia. Proc. Natl Acad. Sci. USA 108, 11017–11022 (2011).
Engelhart, S. E. & Horton, B. P. Holocene sea level database for the Atlantic coast of the United States. Quat. Sci. Rev. 54, 12–25 (2012).
Friedrichs, C. T. & Perry, J. E. Tidal salt marsh morphodynamics. J. Coast. Res. 27, 6–36 (2001).
Larsen, L. G. & Harvey, J. W. How vegetation and sediment transport feedbacks drive landscape change in the Everglades and wetlands worldwide. Am. Nat. 176, E66–E79 (2010).
Marani, M., Da Lio, C. & D'Alpaos, A. Vegetation engineers marsh morphology through multiple competing stable states. Proc. Natl Acad. Sci. USA 110, 3259–3263 (2013).
Reed, D. J. The response of coastal marshes to sea-level rise: survival or submergence? Earth Surf. Processes Landforms 20, 39–48 (1995).
Temmerman, S., Goers, G., Wartel, S. & Meire, P. Spatial and temporal factors controlling short-term sedimentation in a salt and freshwater tidal marsh, Scheldt Estuary, Belgium, SW Netherlands. Earth Surf. Processes Landforms 28, 739–755 (2003).
Marion, C., Anthony, E. J. & Trentesaux, A. Short-term (≤ 2 yrs) estuarine mudflat and saltmarsh sedimentation: High-resolution data from ultrasonic altimetry, rod surface-elevation table, and filter traps. Estuar. Coast. Shelf Sci. 83, 475–484 (2009).
McKee, K. L., Cahoon, D. R. & Feller, I. C. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr. 16, 545–556 (2007).
Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. Responses of coastal wetlands to rising sea level. Ecology 83, 2869–2877 (2002). This article proposes that an optimum elevation (flooding frequency) for plant growth defines the transition from stable to unstable marsh.
Kirwan, M. L. & Guntenspergen, G. R. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J. Ecol. 100, 764–770 (2012).
Marani, M., Lanzoni, S., Silvestri, S. & Rinaldo, A. Tidal landforms, patterns of halophytic vegetation and the fate of the lagoon of Venice. J. Mar. Syst. 51, 191–210 (2004).
Temmerman, S., Moonen, P., Schoelynck, J., Govers, G. & Bouma, T. J. Impact of vegetation die-off on spatial flow patterns over a tidal marsh. Geophys. Res. Lett. 39, L03406 (2012).
Möller, I. Quantifying saltmarsh vegetation and its effect on wave height dissipation: Results from a UK east coast saltmarsh. Estuar. Coast. Shelf Sci. 69, 337–351 (2006).
Mudd, S. M., D'Alpaos, A. & Morris, J. T. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediates sedimentation. J. Geophys. Res. 115, F03029 (2010).
Cherry, J. A., McKee, K. L. & Grace, J. B. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise. J. Ecol. 97, 67–77 (2009).
Kolker, A. S., Kirwan, M. L., Goodbred, S. L. & Cochran, J. K. Global climate changes recorded in coastal wetland sediments: empirical observation linked to theoretical predictions. Geophys. Res. Lett. 37, L14706 (2010).
Mariotti, G. & Fagherazzi, S. A numerical model for the coupled long-term evolution of salt marshes and tidal flats. J. Geophys. Res. 115, F01004 (2010).
Mariotti, G. et al. Influence of storm surges and sea level on shallow tidal basin erosive processes. J. Geophys. Res. 115, C11012 (2010).
Doyle, T. W., Krauss, K. W., Conner, W. H. & From, A. S. Predicting the retreat and migration of tidal forests along the northern Gulf of Mexico under sea-level rise. For. Ecol. Manage. 259, 770–777 (2010).
Morris, J. T., Edwards, J., Crooks, S. & Reyes, E. in Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle (eds Lal, R. et al.) 517–531 (Springer, 2012).
Yang, S. L., Milliman, J. D., Li, P. & Xu, K. 50,000 dams later: erosion of the Yangtze River and its delta. Global Planet. Change 75, 14–20 (2011). This article reports that upstream sediment restriction causes delta erosion that liberates enough sediment to sustain marshes.
D'Alpaos, A., Lanzoni, S., Marani, M. & Rinaldo, A. Landscape evolution in tidal embayments: modeling the interplay of erosion sedimentation and vegetation dynamics. J. Geophys. Res. 112, F01008 (2007).
Kirwan, M., Murray, A. & Boyd, W. Temporary vegetation disturbance as an explanation for permanent loss of tidal wetlands. Geophys. Res. Lett. 35, L05403 (2008).
Kearney, M. S., Rogers, A. S., Townsend, G., Rizzo, E. & Stutzer, D. Landsat imagery shows decline of coastal marshes in Chesapeake and Delaware Bays. Eos 83, 173–178 (2002).
Carniello, L., Defina, A. & D'Alpaos, L. Morphological evolution of the Venice lagoon: evidence from the past and trend for the future. J. Geophys. Res. 114, F04002 (2009).
Nyman, J. A., DeLaune, R. D., Roberts, H. H. & Patrick, W. H. Jr. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Mar. Ecol. Prog. Ser. 96, 269–279 (1993).
Fagherazzi, S., Carniello, L., D'Alpaos, L. & Defina, A. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proc. Natl Acad. Sci. USA 103, 8337–8341 (2006).
Stevenson, J. C. & Kearney, M. S. in Human Impacts on Salt Marshes: A Global Perspective (eds Silliman, B. R., Grosholtz, E. D. & Bertness, M. D.) 171–206 (Univ. California Press, 2009).
Davis, R. A., Yale, K. E., Pekala, J. M. & Hamilton, M. V. Barrier island stratigraphy and Holocene history of west-central Florida. Mar. Geol. 200, 103–123 (2003).
Balduff, D. M. Pedogenesis, Inventory, and Utilization of Subaqueous Soils in Chincoteague Bay, Maryland. PhD thesis, Univ. Maryland (2007).
D'Alpaos, A., Da Lio, C. & Marani, M. Biogeomorphology of tidal landforms: physical and biological processes shaping the tidal landscape. Ecohydrology 5, 550–562 (2012).
Kirwan, M. L., Murray, A. B., Donnelly, J. P. & Corbett, D. R. Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates. Geology 39, 507–510 (2011).
Li, Y.-X., Törnqvist, T. E., Nevitt, J. M. & Kohl, B. Synchronizing a sea-level jump, final Lake Agassiz drainage, and abrupt cooling 8,200 years ago. Earth Planet. Sci. Lett. 315–316, 41–50 (2012).
Cronin, T. M. et al. Rapid sea level rise and ice sheet response to 8,200-year climate event. Geophys. Res. Lett. 34, L20603 (2007).
Donnelly, J. P. & Bertness, M. D. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proc. Natl Acad. Sci. USA 98, 14218–14223 (2001).
Kirwan, M. L. & Temmerman, S. Coastal marsh response to historical and future sea-level acceleration. Quat. Sci. Rev. 28, 1801–1808 (2009).
Silliman, B. R. et al. Degradation and resilience in Louisiana salt marshes after the BP–Deepwater Horizon oil spill. Proc. Natl Acad. Sci. USA 109, 11234–11239 (2012). This article reports that vegetation mortality associated with oiling triggered rapid marsh edge erosion, and emphasizes the importance of vegetation health on marsh stability.
Smith, S. M. Multi-decadal changes in salt marshes of Cape Cod, MA: Photographic analyses of vegetation loss, species shifts, and geomorphic change. Northeas. Nat. 16, 183–208 (2009).
Cahoon, D. R. et al. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J. Ecol. 91, 1093–1105 (2003).
Silliman, B. R., van de Koppel, J., Bertness, M. D. & Mendelssohn, I. A. Drought, snails, and large-scale die-off of southern U.S. salt marshes. Science 310, 1803–1806 (2005).
Alber, M., Swenson, E. M., Adamowicz, S. C. & Mendelssohn, I. A. Salt marsh dieback: an overview of recent events in the US. Estuar. Coast. Shelf Sci. 80, 1–11 (2008).
Baustian, J. J., Mendelssohn, I. A. & Hester, M. W. Vegetation's importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Glob. Change Biol. 18, 3377–3382 (2012).
Langley, J. A. & Megonigal, J. P. Ecosystem response to elevated CO2 levels limited by nitrogen-fuelled species shift. Nature 466, 96–99 (2010). This article reports that elevated CO 2 in isolation accelerated marsh elevation gain, but nitrogen additions caused a shift to a species unresponsive to elevated CO 2.
Langley, J. A., Mckee, K. L., Cahoon, D. R., Cherry, J. A. & Megonigal, J. P. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc. Natl Acad. Sci. USA 106, 6182–6186 (2009).
Bouillon, S. et al. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochem. Cycles 22, GB2013 (2008).
Kirwan, M. L. & Blum, L. K. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change. Biogeosciences 8, 987–993 (2011).
Kirwan, M. L. & Mudd, S. M. Response of salt-marsh carbon accumulation to climate change. Nature 489, 550–553 (2012).
Charles, H. & Dukes, J. S. Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh. Ecol. Appl. 19, 1758–1773 (2009).
Gedan, K. B., Altieri, A. H. & Bertness, M. D. Uncertain future of New England salt marshes. Mar. Ecol. Prog. Ser. 434, 229–237 (2011).
Beaumont, L. J. et al. Impacts of climate change on the world's most exceptional ecoregions. Proc. Natl Acad. Sci. USA 108, 2306–2311 (2011).
McKee, K. L., Cahoon, D. R. & Feller, I. C. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr. 16, 545–556 (2007).
Anisfeld, S. & Hill, T. D. Fertilization effects on elevation change and belowground carbon balance in a long island sound Tidal marsh. Estuaries Coasts 35, 201–211 (2012).
Deegan, L. A. et al. Coastal eutrophication as a driver of marsh loss. Nature 490, 388–392 (2012). This article reports that long-term fertilization experiments led to channel expansion through decreased soil strength.
Turner, R. E. Beneath the salt marsh canopy: loss of soil strength with increasing nutrient loads. Estuaries Coasts 34, 1084–1093 (2011).
Howes, N. C. et al. Hurricane-induced failure of low salinity wetlands. Proc. Natl Acad. Sci. USA 107, 14014–14019 (2010).
Rooth, J. E. & Stevenson, J. C. Sediment deposition patterns in Phragmites australis communities: Implications for coastal areas threatened by rising sea-level. Wetlands Ecol. Mgmt 8, 173–183 (2000).
Mozdzer, T. J. & Megonigal, J. P. Jack-and-master trait responses to elevated CO2 and N: a comparison of native and introduced Phragmites australis. PLoS ONE 7, e42794 (2012).
Nicholls, R. J. Coastal megacities and climate change. GeoJournal 37, 369–379 (1995).
Syvitski, J. P. et al. Sinking deltas due to human activities. Nature Geosci. 2, 681–686 (2009).
Törnqvist, T. E. et al. Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nature Geosci. 1, 173–176 (2008).
Kolker, A. S., Allison, M. A. & Hameed, S. An evaluation of subsidence rates and sea-level variability in the northern Gulf of Mexico. Geophys. Res. Lett. 38, L21404 (2011). This article relates temporal trends in wetland loss to trends in subsidence rates and hydrocarbon extraction.
Turner, R. E. Wetland loss in the northern Gulf of Mexico: multiple working hypotheses. Estuaries 20, 1–13 (1997).
Syvitski, J. P., Vorosmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).
Tweel, A. W. & Turner, R. E. Watershed land use and river engineering drive wetland formation and loss in the Mississippi River birdfoot delta. Limnol. Oceanogr. 57, 18–28 (2012).
Yang, S. L. et al. Impact of dams on Yangtze River sediment supply to the sea and delta intertidal wetland response. J. Geophys. Res. 110, F03006 (2005).
Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).
Gedan, K. B., Silliman, B. R. & Bertness, M. D. Centuries of human-driven change in salt marsh ecosystems. Annu. Rev. Mar. Sci. 1, 117–141 (2009).
Stedman, S. & Dahl, T. E. Status and Trends of Wetlands in the Coastal Watersheds of the Eastern United States 1998–2004 (NOAA & US Department of the Interior, 2008).
Coleman, J. M., Huh, O. K. & Braud, D. Wetland loss in world deltas. J. Coast. Res. 24, 1–14 (2008).
Giri, C. et al. Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J. Biogeogr. 35, 519–528 (2008).
Feagin, R. A. et al. Shelter from the storm? Use and misuse of coastal vegetation bioshields for managing natural disasters. Conserv. Lett. 3, 1–11 (2010).
Das, S. & Vincent, J. R. Mangroves protected villages and reduced death toll during Indian super cyclone. Proc. Natl Acad. Sci. USA 106, 7357–7360 (2009).
Barbier, E. B., Georgiou, I. Y., Enchelmeyer, B. & Reed, D. J. The value of wetlands in protecting southeast Louisiana from hurricane storm surges. PLoS ONE 8, e58715 (2013).
Barbier, E. B. et al. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 319, 321–323 (2008). This article proposes that maximal economic value of mangrove forests can accommodate competing land uses.
Nicholls, R. J. Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios. Glob. Environ. Change 14, 69–86 (2004).
van der Wal, D. & Pye, K. Patterns, rates and possible causes of saltmarsh erosion in the Greater Thames area (UK). Geomorphology 61, 373–391 (2004).
Mattheus, C. R., Rodriguez, A. B., McKee, B. A. & Currin, C. A. Impact of land-use change and hard structures on the evolution of fringing marsh shorelines. Estuar. Coast. Shelf Sci. 88, 365–376 (2010).
Siikamäki, J., Sanchirico, J. N. & Jardine, S. L. Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proc. Natl Acad. Sci. USA 109, 14369–14374 (2012).
Bauer, D. M., Cyr, N. A. & Swallow, S. K. Public preferences for compensatory mitigation of salt marsh losses: a contingent choice of alternatives. Conserv. Biol. 18, 401–411 (2004).
Poulter, B., Qian, S. S. & Christensen, N. L. Jr. Determinants of coastal treelines, the role of abiotic and biotic interactions. Plant Ecol. 202, 55–66 (2009).
Larsen, L. G. & Harvey, J. W. Modeling of hydroecological feedbacks predicts distinct classes of landscape pattern, process, and restoration potential in shallow aquatic ecosystems. Geomorphology 126, 279–296 (2011).
Blum, M. D. & Roberts, H. H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nature Geosci. 2, 488–491 (2009).
Neubauer, S. C. Contributions of mineral and organic components of tidal freshwater marsh accretion. Estuar. Coast. Shelf Sci. 78, 78–88 (2008).
Turner, R. E., Swenson, E. M. & Milan, C. S. in Concepts and Controversies in Tidal Marsh Ecology (eds Weinstein, M. & Kreeger, D. A.) 583–595 (Kluwer, 2000).
Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Science 478, 49–56 (2011).
Freeman, C., Ostle, N. & Kang, H. An enzymatic 'latch' on a global carbon store. Nature 409, 149 (2001).
Megonigal, J. P., Hines, M. E. & Visscher, P. T. in Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes (ed. Schlesinger, W. H.) 317–424 (Elsevier–Pergamon, 2004).
Craft, C. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes. Limnol. Oceanogr. 52, 1220–1230 (2007).
Weston, N. B., Vile, M. A., Neubauer, D. C. & Velinsky, D. J. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry 102, 135–151 (2011).
Acknowledgements
The U.S.G.S. Global Change Research Program and the Virginia Coast Reserve Long Term Ecological Research Program (NSF DEB-0621014) supported this work financially. We thank G. Guntenspergen for conversations that enhanced this work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Reprints and permissions information is available at www.nature.com/reprint.
Rights and permissions
About this article
Cite this article
Kirwan, M., Megonigal, J. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013). https://doi.org/10.1038/nature12856
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature12856
This article is cited by
-
Oxygen priming induced by elevated CO2 reduces carbon accumulation and methane emissions in coastal wetlands
Nature Geoscience (2023)
-
Short-term sedimentation dynamics in mesotidal marshes
Scientific Reports (2023)
-
Plant traits and marsh fate
Nature Geoscience (2023)
-
Sea-level changes and paleoenvironmental responses in a coastal Florida salt marsh over the last three centuries
Journal of Paleolimnology (2023)
-
Prolonged coastal inundation detected with synthetic aperture radar significantly retarded functional recovery of mangroves after major hurricanes
Landscape Ecology (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.