Abstract
Excavations of a complex of caves in the Sierra de Atapuerca in northern Spain have unearthed hominin fossils that range in age from the early Pleistocene to the Holocene1. One of these sites, the ‘Sima de los Huesos’ (‘pit of bones’), has yielded the world’s largest assemblage of Middle Pleistocene hominin fossils2,3, consisting of at least 28 individuals4 dated to over 300,000 years ago5. The skeletal remains share a number of morphological features with fossils classified as Homo heidelbergensis and also display distinct Neanderthal-derived traits6,7,8. Here we determine an almost complete mitochondrial genome sequence of a hominin from Sima de los Huesos and show that it is closely related to the lineage leading to mitochondrial genomes of Denisovans9,10, an eastern Eurasian sister group to Neanderthals. Our results pave the way for DNA research on hominins from the Middle Pleistocene.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Carbonell, E. et al. The first hominin of Europe. Nature 452, 465–469 (2008)
Arsuaga, J. L., Martinez, I., Gracia, A. & Lorenzo, C. The Sima de los Huesos crania (Sierra de Atapuerca, Spain). A comparative study. J. Hum. Evol. 33, 219–281 (1997)
Arsuaga, J. L. et al. Size variation in Middle Pleistocene humans. Science 277, 1086–1088 (1997)
Bermúdez de Castro, J. M. & Nicolas, M. E. Palaeodemography of the Atapuerca-SH Middle Pleistocene hominid sample. J. Hum. Evol. 33, 333–355 (1997)
Bischoff, J. L. et al. Geology and preliminary dating of the hominid-bearing sedimentary fill of the Sima de los Huesos Chamber, Cueva Mayor of the Sierra de Atapuerca, Burgos, Spain. J. Hum. Evol. 33, 129–154 (1997)
Martínez, I. & Arsuaga, J. L. The temporal bones from Sima de los Huesos Middle Pleistocene site (Sierra de Atapuerca, Spain). A phylogenetic approach. J. Hum. Evol. 33, 283–318 (1997)
Martinón-Torres, M., Bermudez de Castro, J. M., Gomez-Robles, A., Prado-Simon, L. & Arsuaga, J. L. Morphological description and comparison of the dental remains from Atapuerca-Sima de los Huesos site (Spain). J. Hum. Evol. 62, 7–58 (2012)
Stringer, C. The status of Homo heidelbergensis (Schoetensack 1908). Evol. Anthropol. 21, 101–107 (2012)
Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010)
Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012)
Ortega, A. I. et al. Evolution of multilevel caves in the Sierra de Atapuerca (Burgos, Spain) and its relation to human occupation. Geomorphology 196, 122–137 (2013)
Arsuaga, J. L. et al. Sima de los Huesos (Sierra de Atapuerca, Spain). The site. J. Hum. Evol. 33, 109–127 (1997)
Valdiosera, C. et al. Typing single polymorphic nucleotides in mitochondrial DNA as a way to access Middle Pleistocene DNA. Biol. Lett. 2, 601–603 (2006)
Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013)
Willerslev, E. et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317, 111–114 (2007)
Orlando, L. et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499, 74–78 (2013)
Carretero, J. M. et al. Stature estimation from complete long bones in the Middle Pleistocene humans from the Sima de los Huesos, Sierra de Atapuerca (Spain). J. Hum. Evol. 62, 242–255 (2012)
Gansauge, M. T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nature Protocols 8, 737–748 (2013)
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009)
Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl Acad. Sci. USA 104, 14616–14621 (2007)
Krause, J. et al. A complete mtDNA genome of an early modern human from Kostenki, Russia. Curr. Biol. 20, 231–236 (2010)
Sawyer, S., Krause, J., Guschanski, K., Savolainen, V. & Paabo, S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS ONE 7, e34131 (2012)
Krause, J. et al. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464, 894–897 (2010)
Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003)
Shapiro, B. et al. A Bayesian phylogenetic method to estimate unknown sequence ages. Mol. Biol. Evol. 28, 879–887 (2011)
Arsuaga, J. L., Martinez, I., Gracia, A., Carretero, J. M. & Carbonell, E. Three new human skulls from the Sima de los Huesos Middle Pleistocene site in Sierra de Atapuerca, Spain. Nature 362, 534–537 (1993)
Arsuaga, J. L. Colloquium paper: terrestrial apes and phylogenetic trees. Proc. Natl Acad. Sci. USA 107 (Suppl. 2). 8910–8917 (2010)
Hublin, J. J. Out of Africa: Modern human origins special feature: The origin of Neandertals. Proc. Natl Acad. Sci. USA 106, 16022–16027 (2009)
Mounier, A., Marchal, F. & Condemi, S. Is Homo heidelbergensis a distinct species? New insight on the Mauer mandible. J. Hum. Evol. 56, 219–246 (2009)
Carbonell, E. et al. An Early Pleistocene hominin mandible from Atapuerca-TD6, Spain. Proc. Natl Acad. Sci. USA 102, 5674–5678 (2005)
Dabney, J. & Meyer, M. Length and GC-biases during sequencing library amplification: a comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries. Biotechniques 52, 87–94 (2012)
Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012)
Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013)
Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 22, 939–946 (2012)
Maricic, T., Whitten, M. & Paabo, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS ONE 5, e14004 (2010)
Renaud, G., Kircher, M., Stenzel, U. & Kelso, J. freeIbis: an efficient basecaller with calibrated quality scores for Illumina sequencers. Bioinformatics 29, 1208–1209 (2013)
Kircher, M. Analysis of high-throughput ancient DNA sequencing data. Methods Mol. Biol. 840, 197–228 (2012)
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009)
Ingman, M., Kaessmann, H., Paabo, S. & Gyllensten, U. Mitochondrial genome variation and the origin of modern humans. Nature 408, 708–713 (2000)
Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013)
Briggs, A. W. et al. Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science 325, 318–321 (2009)
Zsurka, G. et al. Distinct patterns of mitochondrial genome diversity in bonobos (Pan paniscus) and humans. BMC Evol. Biol. 10, 270 (2010)
Bjork, A., Liu, W., Wertheim, J. O., Hahn, B. H. & Worobey, M. Evolutionary history of chimpanzees inferred from complete mitochondrial genomes. Mol. Biol. Evol. 28, 615–623 (2011)
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013)
Posada, D. & Crandall, K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998)
Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007)
Kass, R. E. & Raftery, A. E. Bayes Factors. J. Am. Stat. Assoc. 90, 773–795 (1995)
Horai, S. et al. Man’s place in Hominoidea revealed by mitochondrial DNA genealogy. J. Mol. Evol. 35, 32–43 (1992)
Green, R. E. et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134, 416–426 (2008)
Stone, A. C. et al. More reliable estimates of divergence times in Pan using complete mtDNA sequences and accounting for population structure. Phil. Trans. R. Soc. Lond. B 365, 3277–3288 (2010)
Soares, P. et al. Correcting for purifying selection: an improved human mitochondrial molecular clock. Am. J. Hum. Genet. 84, 740–759 (2009)
Acknowledgements
We thank J. Dabney, M. Dannemann, C. de Filippo, S. Lippold, K. Prüfer, M. Slatkin, M. Stiller, C. Valdiosera and B. Viola for discussions and comments on the manuscript; G. Renaud and U. Stenzel for help with sequence data processing; B. Höber and A. Weihmann for performing the sequencing runs; M. Gansauge, P. Korlević, R. Rodríguez and I. Ureña for help in the laboratory; M. Schreiber for help with graphics; J. Trueba for providing the fossil image; M. Cruz Ortega for restoration of the fossil and the rest of the members of the Sima de los Huesos excavation team for decades of continuous efforts. Genetics work was funded by the Max Planck Society and its Presidential Innovation Fund. Field work at the Sierra de Atapuerca sites is funded by the Junta de Castilla y León and the Fundación Atapuerca. Research was supported by Spanish Ministerio de Ciencia e Innovación (project CGL2009-12703-C03) and Spanish Ministerio de Economía y Competitividad (project CGL2012-38434-C03).
Author information
Authors and Affiliations
Contributions
M.M. designed the experiments and analysed the data; Q.F. performed phylogenetic analyses; A.A., I.G. and B.N. performed the experiments; J.-L.A., I.M., A.G., J.M.B. and E.C. excavated the fossil and provided expert archaeological and anthropological information; J.-L.A. and S.P. were involved in study design; and M.M., J.-L.A. and S.P. wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Extended data figures and tables
Extended Data Figure 2 5′ and 3′ C to T substitution frequencies plotted against the number of unique mitochondrial sequences retrieved from each sample library.
Libraries prepared from re-extracted pellets or surface material are highlighted in colour.
Extended Data Figure 3 Sequence length distribution of unique sequences.
The distribution obtained from the Sima de los Huesos cave bear is shown for comparison.
Extended Data Figure 6 Complete view of the mid-point rooted phylogenetic tree constructed with a Bayesian approach under a GTR + I + Γ model of sequence evolution using the Sima de los Huesos consensus sequence generated with inclusive filters as well as 54 present-day humans, 9 ancient humans, 7 Neanderthals, 2 Denosivans, 22 bonobos and 24 chimpanzees.
The posterior probabilities are provided for the major nodes.
Rights and permissions
About this article
Cite this article
Meyer, M., Fu, Q., Aximu-Petri, A. et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505, 403–406 (2014). https://doi.org/10.1038/nature12788
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature12788
This article is cited by
-
Dating ancient splits in phylogenetic trees, with application to the human-Neanderthal split
BMC Genomic Data (2024)
-
More than a decade of genetic research on the Denisovans
Nature Reviews Genetics (2024)
-
Virtual excavation and analysis of the early Neanderthal cranium from Altamura (Italy)
Communications Biology (2023)
-
How to Elucidate Functional Genomic Differences between Extinct Organisms and Their Extant Relatives
Journal of Earth Science (2023)
-
Sustainable human population density in Western Europe between 560.000 and 360.000 years ago
Scientific Reports (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.