Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural mechanism of ligand activation in human GABAB receptor

Abstract

Human GABAB (γ-aminobutyric acid class B) receptor is a G-protein-coupled receptor central to inhibitory neurotransmission in the brain. It functions as an obligatory heterodimer of the subunits GBR1 and GBR2. Here we present the crystal structures of a heterodimeric complex between the extracellular domains of GBR1 and GBR2 in the apo, agonist-bound and antagonist-bound forms. The apo and antagonist-bound structures represent the resting state of the receptor; the agonist-bound complex corresponds to the active state. Both subunits adopt an open conformation at rest, and only GBR1 closes on agonist-induced receptor activation. The agonists and antagonists are anchored in the interdomain crevice of GBR1 by an overlapping set of residues. An antagonist confines GBR1 to the open conformation of the inactive state, whereas an agonist induces its domain closure for activation. Our data reveal a unique activation mechanism for GABAB receptor that involves the formation of a novel heterodimer interface between subunits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structures of the GBR1bVFT:GBR2VFT complex.
Figure 2: Agonist-induced conformational changes.
Figure 3: Heterodimer interface.
Figure 4: Ligand recognition by GBR1bVFT.
Figure 5: Constitutive activity of disulphide-tethered GBR1b:GBR2 heterodimer.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Data deposits

Atomic coordinates and diffraction data for the structures reported here are deposited in the RCSB Protein Data Bank under accession codes 4MQE, 4MQF, 4MR7, 4MR8, 4MR9, 4MRM, 4MS1, 4MS3 and 4MS4.

References

  1. Bettler, B., Kaupmann, K., Mosbacher, J. & Gassmann, M. Molecular structure and physiological functions of GABA(B) receptors. Physiol. Rev. 84, 835–867 (2004)

    CAS  PubMed  Google Scholar 

  2. Bowery, N. G. et al. International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function. Pharmacol. Rev. 54, 247–264 (2002)

    CAS  PubMed  Google Scholar 

  3. Froestl, W. Chemistry and pharmacology of GABAB receptor ligands. Adv. Pharmacol. 58, 19–62 (2010)

    CAS  PubMed  Google Scholar 

  4. Pin, J. P. et al. The activation mechanism of class-C G-protein coupled receptors. Biol. Cell 96, 335–342 (2004)

    CAS  PubMed  Google Scholar 

  5. Romano, C., Yang, W. L. & O’Malley, K. L. Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J. Biol. Chem. 271, 28612–28616 (1996)

    CAS  PubMed  Google Scholar 

  6. Okamoto, T. et al. Expression and purification of the extracellular ligand binding region of metabotropic glutamate receptor subtype 1. J. Biol. Chem. 273, 13089–13096 (1998)

    CAS  PubMed  Google Scholar 

  7. Tsuji, Y. et al. Cryptic dimer interface and domain organization of the extracellular region of metabotropic glutamate receptor subtype 1. J. Biol. Chem. 275, 28144–28151 (2000)

    CAS  PubMed  Google Scholar 

  8. Bai, M., Trivedi, S. & Brown, E. M. Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells. J. Biol. Chem. 273, 23605–23610 (1998)

    CAS  PubMed  Google Scholar 

  9. Jones, K. A. et al. GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396, 674–679 (1998)

    ADS  CAS  PubMed  Google Scholar 

  10. Kaupmann, K. et al. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683–687 (1998)

    ADS  CAS  PubMed  Google Scholar 

  11. White, J. H. et al. Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 396, 679–682 (1998)

    ADS  CAS  PubMed  Google Scholar 

  12. Kuner, R. et al. Role of heteromer formation in GABAB receptor function. Science 283, 74–77 (1999)

    ADS  CAS  PubMed  Google Scholar 

  13. Milligan, G. G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br. J. Pharmacol. 158, 5–14 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ng, G. Y. et al. Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. J. Biol. Chem. 274, 7607–7610 (1999)

    CAS  PubMed  Google Scholar 

  15. Nelson, G. et al. Mammalian sweet taste receptors. Cell 106, 381–390 (2001)

    CAS  PubMed  Google Scholar 

  16. Nelson, G. et al. An amino-acid taste receptor. Nature 416, 199–202 (2002)

    ADS  CAS  PubMed  Google Scholar 

  17. Margeta-Mitrovic, M., Jan, Y. N. & Jan, L. Y. A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron 27, 97–106 (2000)

    CAS  PubMed  Google Scholar 

  18. Pagano, A. et al. C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABA(b) receptors. J. Neurosci. 21, 1189–1202 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaupmann, K. et al. Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature 386, 239–246 (1997)

    ADS  CAS  PubMed  Google Scholar 

  20. Malitschek, B. et al. The N-terminal domain of gamma-aminobutyric Acid(B) receptors is sufficient to specify agonist and antagonist binding. Mol. Pharmacol. 56, 448–454 (1999)

    CAS  PubMed  Google Scholar 

  21. Kniazeff, J., Galvez, T., Labesse, G. & Pin, J. P. No ligand binding in the GB2 subunit of the GABA(B) receptor is required for activation and allosteric interaction between the subunits. J. Neurosci. 22, 7352–7361 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Galvez, T. et al. Allosteric interactions between GB1 and GB2 subunits are required for optimal GABA(B) receptor function. EMBO J. 20, 2152–2159 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, J. et al. Molecular determinants involved in the allosteric control of agonist affinity in the GABAB receptor by the GABAB2 subunit. J. Biol. Chem. 279, 15824–15830 (2004)

    CAS  PubMed  Google Scholar 

  24. Nomura, R., Suzuki, Y., Kakizuka, A. & Jingami, H. Direct detection of the interaction between recombinant soluble extracellular regions in the heterodimeric metabotropic gamma-aminobutyric acid receptor. J. Biol. Chem. 283, 4665–4673 (2008)

    CAS  PubMed  Google Scholar 

  25. Monnier, C. et al. Trans-activation between 7TM domains: implication in heterodimeric GABA(B) receptor activation. EMBO J. 30, 32–42 (2011)

    ADS  CAS  PubMed  Google Scholar 

  26. Geng, Y. et al. Structure and functional interaction of the extracellular domain of human GABAB receptor GBR2. Nature Neurosci. 15, 970–978 (2012)

    CAS  PubMed  Google Scholar 

  27. Margeta-Mitrovic, M., Jan, Y. N. & Jan, L. Y. Ligand-induced signal transduction within heterodimeric GABA(B) receptor. Proc. Natl Acad. Sci. USA 98, 14643–14648 (2001)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Margeta-Mitrovic, M., Jan, Y. N. & Jan, L. Y. Function of GB1 and GB2 subunits in G protein coupling of GABA(B) receptors. Proc. Natl Acad. Sci. USA 98, 14649–14654 (2001)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Robbins, M. J. et al. GABA(B2) is essential for g-protein coupling of the GABA(B) receptor heterodimer. J. Neurosci. 21, 8043–8052 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Duthey, B. et al. A single subunit (GB2) is required for G-protein activation by the heterodimeric GABA(B) receptor. J. Biol. Chem. 277, 3236–3241 (2002)

    CAS  PubMed  Google Scholar 

  31. Havlickova, M. et al. The intracellular loops of the GB2 subunit are crucial for G-protein coupling of the heteromeric gamma-aminobutyrate B receptor. Mol. Pharmacol. 62, 343–350 (2002)

    CAS  PubMed  Google Scholar 

  32. Pin, J. P. et al. Activation mechanism of the heterodimeric GABA(B) receptor. Biochem. Pharmacol. 68, 1565–1572 (2004)

    CAS  PubMed  Google Scholar 

  33. Kunishima, N. et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971–977 (2000)

    ADS  CAS  PubMed  Google Scholar 

  34. Tsuchiya, D., Kunishima, N., Kamiya, N., Jingami, H. & Morikawa, K. Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+. Proc. Natl Acad. Sci. USA 99, 2660–2665 (2002)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Muto, T., Tsuchiya, D., Morikawa, K. & Jingami, H. Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc. Natl Acad. Sci. USA 104, 3759–3764 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. van den Akker, F. et al. Structure of the dimerized hormone-binding domain of a guanylyl-cyclase-coupled receptor. Nature 406, 101–104 (2000)

    ADS  CAS  PubMed  Google Scholar 

  37. He, X., Chow, D., Martick, M. M. & Garcia, K. C. Allosteric activation of a spring-loaded natriuretic peptide receptor dimer by hormone. Science 293, 1657–1662 (2001)

    ADS  CAS  Google Scholar 

  38. Jin, R. et al. Crystal structure and association behaviour of the GluR2 amino-terminal domain. EMBO J. 28, 1812–1823 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Karakas, E., Simorowski, N. & Furukawa, H. Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J. 28, 3910–3920 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kumar, J., Schuck, P., Jin, R. & Mayer, M. L. The N-terminal domain of GluR6-subtype glutamate receptor ion channels. Nature Struct. Mol. Biol. 16, 631–638 (2009)

    CAS  Google Scholar 

  41. Sack, J. S., Saper, M. A. & Quiocho, F. A. Periplasmic binding protein structure and function. Refined X-ray structures of the leucine/isoleucine/valine-binding protein and its complex with leucine. J. Mol. Biol. 206, 171–191 (1989)

    CAS  PubMed  Google Scholar 

  42. Kniazeff, J. et al. Locking the dimeric GABA(B) G-protein-coupled receptor in its active state. J. Neurosci. 24, 370–377 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rondard, P. et al. Functioning of the dimeric GABA(B) receptor extracellular domain revealed by glycan wedge scanning. EMBO J. 27, 1321–1332 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Galvez, T. et al. Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. J. Biol. Chem. 274, 13362–13369 (1999)

    CAS  PubMed  Google Scholar 

  45. Galvez, T. et al. Mapping the agonist-binding site of GABAB type 1 subunit sheds light on the activation process of GABAB receptors. J. Biol. Chem. 275, 41166–41174 (2000)

    CAS  PubMed  Google Scholar 

  46. Galvez, T. et al. Ca(2+) requirement for high-affinity gamma-aminobutyric acid (GABA) binding at GABA(B) receptors: involvement of serine 269 of the GABA(B)R1 subunit. Mol. Pharmacol. 57, 419–426 (2000)

    CAS  PubMed  Google Scholar 

  47. Kniazeff, J. et al. Closed state of both binding domains of homodimeric mGlu receptors is required for full activity. Nature Struct. Mol. Biol. 11, 706–713 (2004)

    CAS  Google Scholar 

  48. Furukawa, H., Singh, S. K., Mancusso, R. & Gouaux, E. Subunit arrangement and function in NMDA receptors. Nature 438, 185–192 (2005)

    ADS  CAS  PubMed  Google Scholar 

  49. Kammerer, R. A. et al. Heterodimerization of a functional GABAB receptor is mediated by parallel coiled-coil alpha-helices. Biochemistry 38, 13263–13269 (1999)

    CAS  PubMed  Google Scholar 

  50. Berger, I., Fitzgerald, D. J. & Richmond, T. J. Baculovirus expression system for heterologous multiprotein complexes. Nature Biotechnol. 22, 1583–1587 (2004)

    CAS  Google Scholar 

  51. Kabsch, W. Xds. Acta Crystallogr. D 66, 125–132 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006)

    PubMed  Google Scholar 

  53. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    CAS  PubMed  Google Scholar 

  54. Kerr, D. I., Ong, J., Doolette, D. J., Schafer, K. & Prager, R. H. The (S)-enantiomer of 2-hydroxysaclofen is the active GABAB receptor antagonist in central and peripheral preparations. Eur. J. Pharmacol. 287, 185–189 (1995)

    CAS  PubMed  Google Scholar 

  55. Frydenvang, K. et al. GABAB antagonists: resolution, absolute stereochemistry, and pharmacology of (R)- and (S)-phaclofen. Chirality 6, 583–589 (1994)

    CAS  PubMed  Google Scholar 

  56. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    PubMed  Google Scholar 

  58. Roversi, P., Blanc, E., Vonrhein, C., Evans, G. & Bricogne, G. Modelling prior distributions of atoms for macromolecular refinement and completion. Acta Crystallogr. D 56, 1316–1323 (2000)

    CAS  PubMed  Google Scholar 

  59. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    CAS  PubMed  Google Scholar 

  60. Novotny, M., Madsen, D. & Kleywegt, G. J. Evaluation of protein fold comparison servers. Proteins 54, 260–270 (2004)

    CAS  PubMed  Google Scholar 

  61. Morin, A. et al. Collaboration gets the most out of software. eLife 2, e01456 (2013)

    PubMed  PubMed Central  Google Scholar 

  62. Dombkowski, A. A. Disulfide by Design: a computational method for the rational design of disulfide bonds in proteins. Bioinformatics 19, 1852–1853 (2003)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. A. Hendrickson and R. Kass for advice and support; I. Berger for the gift of pFBDM vector; K. Rajashankar, K. Perry, S. Banerjee, F. Murphy, I. Kourinov and D. Neau for help with data collection; Y. Chen for technical assistance; and M. Evelyn for reading the manuscript. This work was supported by the American Heart Association grant SDG0835183N and the National Institute of Health grant R01GM088454 (both to Q.R.F.). Q.R.F. is an Irma Hirschl Career Scientist, Pew Scholar, McKnight Scholar and Schaefer Scholar.

Author information

Authors and Affiliations

Authors

Contributions

Q.R.F. initiated the study and designed the experiments; Y.G., Q.R.F., M.B., L.M. and F.W. performed experiments and analysed data; Q.R.F. and Y.G. wrote the paper.

Corresponding author

Correspondence to Qing R. Fan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-14, and Supplementary Tables 1-3. (PDF 7563 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, Y., Bush, M., Mosyak, L. et al. Structural mechanism of ligand activation in human GABAB receptor. Nature 504, 254–259 (2013). https://doi.org/10.1038/nature12725

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12725

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing