Abstract
The effect of anthropogenic aerosols on cloud droplet concentrations and radiative properties is the source of one of the largest uncertainties in the radiative forcing of climate over the industrial period. This uncertainty affects our ability to estimate how sensitive the climate is to greenhouse gas emissions. Here we perform a sensitivity analysis on a global model to quantify the uncertainty in cloud radiative forcing over the industrial period caused by uncertainties in aerosol emissions and processes. Our results show that 45 per cent of the variance of aerosol forcing since about 1750 arises from uncertainties in natural emissions of volcanic sulphur dioxide, marine dimethylsulphide, biogenic volatile organic carbon, biomass burning and sea spray. Only 34 per cent of the variance is associated with anthropogenic emissions. The results point to the importance of understanding pristine pre-industrial-like environments, with natural aerosols only, and suggest that improved measurements and evaluation of simulated aerosols in polluted present-day conditions will not necessarily result in commensurate reductions in the uncertainty of forcing estimates.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Rapid growth and high cloud-forming potential of anthropogenic sulfate aerosol in a thermal power plant plume during COVID lockdown in India
npj Climate and Atmospheric Science Open Access 03 August 2023
-
Interannual fires as a source for subarctic summer decadal climate variability mediated by permafrost thawing
npj Climate and Atmospheric Science Open Access 10 July 2023
-
Chemistry-driven changes strongly influence climate forcing from vegetation emissions
Nature Communications Open Access 23 November 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Twomey, S. Aerosols, clouds, and radiation. Atmos. Environ. A 25, 2435–2442 (1991)
Forster, P. et al. in Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) 129–234 (Cambridge Univ. Press, 2007)
Lohmann, U. & Feichter, J. Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5, 715–737 (2005)
Stevens, B. & Feingold, G. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461, 607–613 (2009)
Andreae, M. O., Jones, C. D. & Cox, P. J. Strong present-day aerosol cooling implies a hot future. Nature 435, 1187–1190 (2005)
Quaas, J. et al. Aerosol indirect effects—general circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys. 9, 8697–8717 (2009)
Lohmann, U. & Ferrachat, S. Impact of parametric uncertainties on the present-day climate and on the anthropogenic aerosol effect. Atmos. Chem. Phys. 10, 11373–11383 (2010)
Pan, W. W., Tatang, M. A., McRae, G. J. & Prinn, R. G. Uncertainty analysis of indirect radiative forcing by anthropogenic sulfate aerosols. J. Geophys. Res. 103, 3815–3823 (1998)
Andreae, M. O. Aerosols before pollution. Science 315, 50–51 (2007)
Andreae, M. O. & Rosenfeld, D. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci. Rev. 89, 13–41 (2008)
Penner, J. E., Xu, L. & Wang, M. H. Satellite methods underestimate indirect climate forcing by aerosols. Proc. Natl Acad. Sci. USA 108, 13404–13408 (2011)
Hoose, C. et al. Constraining cloud droplet number concentration in GCMs suppresses the aerosol indirect effect. Geophys. Res. Lett. 36, L12807 (2009)
Adams, P. J. & Seinfeld, J. H. Predicting global aerosol size distributions in general circulation models. J. Geophys. Res. 107 4370 10.1029/2001JD001010 (2002)
Liu, X., Penner, J. E. & Herzog, M. Global modeling of aerosol dynamics: model description, evaluation, and interactions between sulfate and nonsulfate aerosols. J. Geophys. Res. 110 D18206 10.1029/2004JD005674 (2005)
Spracklen, D. V. et al. A global off-line model of size-resolved aerosol microphysics. I. Model development and prediction of aerosol properties. Atmos. Chem. Phys. 5, 2227–2252 (2005)
Mann, G. W. et al. Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model. Geosci. Model Dev. 3, 519–551 (2010)
Dentener, F. et al. Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos. Chem. Phys. 6, 4321–4344 (2006)
Lee, L. A. et al. The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei. Atmos. Chem. Phys. 13, 8879–8914 (2013)
Lee, L. A., Carslaw, K. S., Pringle, K. J. & Mann, G. W. Mapping the uncertainty in global CCN using emulation. Atmos. Chem. Phys. 12, 9739–9751 (2012)
Saltelli, A., Tarantola, S. & Chan, K. P.-S. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41, 39–56 (1999)
Bellouin, N., Quaas, J., Morcrette, J.-J. & Boucher, O. Estimates of aerosol radiative forcing from the MACC re-analysis. Atmos. Chem. Phys. 13, 2045–2062 (2013)
Woodhouse, M. T. et al. Low sensitivity of cloud condensation nuclei to changes in the sea-air flux of dimethyl-sulphide. Atmos. Chem. Phys. 10, 7545–7559 (2010)
Schmidt, A. et al. Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate. Atmos. Chem. Phys. 12, 7321–7339 (2012)
Otto, A. et al. Energy budget constraints on climate response. Nature Geosci. 6, 415–416 (2013)
Manktelow, P. T., Carslaw, K. S., Mann, G. W. & Spracklen, D. V. Variable CCN formation potential of regional sulfur emissions. Atmos. Chem. Phys. 9, 3253–3259 (2009)
Penner, J. E., Zhou, C. & Xu, L. Consistent estimates from satellites and models for the first aerosol indirect forcing. Geophys. Res. Lett. 39, L13810 (2012)
Neelin, J. D., Bracco, A., Luo, H., McWilliams, J. C. & Meyerson, J. E. Considerations for parameter optimization and sensitivity in climate models. Proc. Natl Acad. Sci. USA 107, 21349–21354 (2010)
Jones, A. et al. Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle. J. Geophys. Res. 106, 20293–20310 (2001)
Edwards, J. M. & Slingo, A. Studies with a flexible new radiation code. I. Choosing a configuration for a large scale model. Q. J. R. Meteorol. Soc. 122, 689–719 (1996)
Rossow, W. B. &. Schiffer, R. A. Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc. 80, 2261–2287 (1999)
Rap, A. et al. Natural aerosol direct and indirect radiative effects. Geophys. Res. Lett. 40, 3297–3301 (2013)
Mann, G. W. et al. Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model. Atmos. Chem. Phys. 12, 4449–4476 (2012)
Spracklen, D. V. et al. Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation. Atmos. Chem. Phys. 10, 4775–4793 (2010)
Reddington, C. L. et al. Primary versus secondary contributions to particle number concentrations in the European boundary layer. Atmos. Chem. Phys. 11, 12007–12036 (2011)
Korhonen, H. et al. Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and seasonality over the remote Southern Hemisphere oceans: a global model study. J. Geophys. Res. 113, D15204 (2008)
Spracklen, D. V., Carslaw, K. S., Poschl, U., Rap, A. & Forster, P. M. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol. Atmos. Chem. Phys. 11, 9067–9087 (2011)
Spracklen, D. V. et al. Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmos. Chem. Phys. 11, 12109–12136 (2011)
Browse, J., Carslaw, K. S., Arnold, S. R., Pringle, K. & Boucher, O. The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol. Atmos. Chem. Phys. 12, 6775–6798 (2012)
Schmidt, A. et al. Excess mortality in Europe following a future Laki-style Icelandic eruption. Proc. Natl Acad. Sci. USA 108, 15710–15715 (2011)
Pringle, K. J. et al. A multi-model assessment of the impact of sea spray geoengineering on cloud droplet number. Atmos. Chem. Phys. 12, 11647–11663 (2012)
Chipperfield, M. P. New version of the TOMCAT/SLIMCAT off-line chemical transport model: intercomparison of stratospheric tracer experiments. Q. J. R. Meteorol. Soc. 132, 1179–1203 (2006)
Bellouin, N. et al. Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model. Atmos. Chem. Phys. 13, 3027–3044 (2013)
Manktelow, P. T., Carslaw, K. S., Mann, G. W. & Spracklen, D. V. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm. Atmos. Chem. Phys. 10, 365–382 (2010)
Arnold, S. R., Chipperfield, M. P. & Blitz, M. A. A three-dimensional model study of the effect of new temperature-dependent quantum yields for acetone photolysis. J. Geophys. Res. 110 D22305 10.1029/2005JD005998 (2005)
Lamarque, J.-F. et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys. 10, 7017–7039 (2010)
Fountoukis, C. & Nenes, A. Continued development of a cloud droplet formation parameterization for global climate models. J. Geophys. Res. 110, D11212 (2005)
Morales, R. & Nenes, A. Characteristic updrafts for computing distribution-averaged cloud droplet number, autoconversion rate and effective radius. J. Geophys. Res. 115 D18220 10.1029/2009JD013233 (2010)
Peng, Y., Lohmann, U. & Leaitch, R. Importance of vertical velocity variations in cloud droplet nucleation process of marine stratus clouds. J. Geophys. Res. Atmos. 110 D21213 10.1029/2004JD004922 (2005)
Lu, M. & Seinfeld, J. H. Study of the aerosol indirect effect by large-eddy simulation of marine stratocumulus. J. Atmos. Sci. 62, 3909–3932 (2005)
Hill, A. A., Feingold, G. & Jiang, H. The influence of entrainment and mixing assumption on aerosol-cloud interactions in marine stratocumulus. J. Atmos. Sci. 66, 1450–1464 (2009)
Guo, H., Liu, Y. & Daum, P. H. Senum, G. I. & Tao, W.-K. Characteristics of vertical velocity in marine stratocumulus: comparison of large eddy simulations with observations. Environ. Res. Lett. 3, 045020 (2008)
Ackerman, A. S. et al. The impact of humidity above stratiform clouds on indirect climate forcing. Nature 432, 1014–1017 (2004)
Wilson, J., Cuvelier, C. & Raes, F. A modeling study of global mixed aerosol fields. J. Geophys. Res. 106, 34081–34092 (2001)
Stocks, B. J. et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. 107 8149 10.1029/2001JD000484 (2002)
Luo, G. & Yu, F. Sensitivity of global cloud condensation nuclei concentrations to primary sulfate emission parameterizations. Atmos. Chem. Phys. 11, 1949–1959 (2011)
Stevens, R. G. et al. Nucleation and growth of sulfate aerosol in coal-fired power plant plumes: sensitivity to background aerosol and meteorology. Atmos. Chem. Phys. 12, 189–206 (2012)
Andres, R. J. & Kasgnoc, A. D. A time-averaged inventory of subaerial volcanic sulfur emissions. J. Geophys. Res. 103, 25251–25262 (1998)
Kettle, A. J. & Andreae, M. O. Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models. J. Geophys. Res. 105, 26793–26808 (2000)
Nightingale, P. D. et al. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Glob. Biogeochem. Cycles 14, 373–387 (2000)
Woodhouse, M. T. et al. Sensitivity of cloud condensation nuclei to regional changes in dimethyl-sulphide emissions. Atmos. Chem. Phys. 13, 2723–2733 (2013)
Bastos, L. & O’Hagan, A. Diagnostics for Gaussian process emulators. Technometrics 4, 425–438 (2011)
Cofala, J., Amann, M., Klimont, Z. & Schopp, W. Scenarios of World Anthropogenic Emissions of SO2, NOx and CO up to 2030. Internal report of the Transboundary Air Pollution Programme (International Institute for Applied Systems Analysis, Laxenburg, 2005)
Bond, T. C. et al. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. 109 D14203 10.1029/2003JD003697 (2004)
van der Werf, G. R., Randerson, J. T., Collatz, G. J. & Giglio, L. Carbon emissions from fires in tropical and subtropical ecosystems. Glob. Change Biol. 9, 547–562 (2003)
Gong, S. A parameterization of sea-salt aerosol source function for sub and super-micron particles. Glob. Biogeochem. Cycles 17 1097 10.1029/2003GB002079 (2003)
Guenther, A. et al. A global model of natural volatile organic compound emissions. J. Geophys. Res. 100, 8873–8892 (1995)
Acknowledgements
This research has received funding from the Natural Environment Research Council AEROS project (project number NE/G006172/1) and GASSP project (project number NE/J024252/1), the EC Seventh Framework Programme under grant agreement FP7-ENV-2010-265148 (Integrated Project PEGASOS), and the National Centre for Atmospheric Science. K.S.C. and P.M.F. are currently Royal Society Wolfson Merit Award holders.
Author information
Authors and Affiliations
Contributions
K.S.C. wrote the manuscript. L.A.L. did the statistical analysis. C.L.R., K.J.P. and G.W.M. performed the aerosol modelling. M.T.W., L.A.R. and K.J.P. prepared the emissions. K.S.C., L.A.L. and C.L.R. did the data interpretation. A.R. and P.M.F. did the forcing calculations. All authors contributed to the editing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Extended data figures and tables
Extended Data Figure 1 Validation of the global annual mean forcing emulator.
The error bars show the emulator 95% uncertainty range around the mean prediction. The 1:1 line is shown.
Rights and permissions
About this article
Cite this article
Carslaw, K., Lee, L., Reddington, C. et al. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503, 67–71 (2013). https://doi.org/10.1038/nature12674
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature12674
This article is cited by
-
Mineral dust aerosol impacts on global climate and climate change
Nature Reviews Earth & Environment (2023)
-
Interannual fires as a source for subarctic summer decadal climate variability mediated by permafrost thawing
npj Climate and Atmospheric Science (2023)
-
Record of pre-industrial atmospheric sulfate in continental interiors
Nature Geoscience (2023)
-
The biogeochemistry of marine dimethylsulfide
Nature Reviews Earth & Environment (2023)
-
A comprehensive appraisal on the effect of aerosol on mountain glaciers: special reference to Sikkim Himalayan region of India
Sādhanā (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.