Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Emergence of macroscopic directed motion in populations of motile colloids


From the formation of animal flocks to the emergence of coordinated motion in bacterial swarms, populations of motile organisms at all scales display coherent collective motion. This consistent behaviour strongly contrasts with the difference in communication abilities between the individuals. On the basis of this universal feature, it has been proposed that alignment rules at the individual level could solely account for the emergence of unidirectional motion at the group level1,2,3,4. This hypothesis has been supported by agent-based simulations1,5,6. However, more complex collective behaviours have been systematically found in experiments, including the formation of vortices7,8,9, fluctuating swarms7,10, clustering11,12 and swirling13,14,15,16. All these (living and man-made) model systems (bacteria9,10,16, biofilaments and molecular motors7,8,13, shaken grains14,15 and reactive colloids11,12) predominantly rely on actual collisions to generate collective motion. As a result, the potential local alignment rules are entangled with more complex, and often unknown, interactions. The large-scale behaviour of the populations therefore strongly depends on these uncontrolled microscopic couplings, which are extremely challenging to measure and describe theoretically. Here we report that dilute populations of millions of colloidal rolling particles self-organize to achieve coherent motion in a unique direction, with very few density and velocity fluctuations. Quantitatively identifying the microscopic interactions between the rollers allows a theoretical description of this polar-liquid state. Comparison of the theory with experiment suggests that hydrodynamic interactions promote the emergence of collective motion either in the form of a single macroscopic ‘flock’, at low densities, or in that of a homogenous polar phase, at higher densities. Furthermore, hydrodynamics protects the polar-liquid state from the giant density fluctuations that were hitherto considered the hallmark of populations of self-propelled particles2,3,17. Our experiments demonstrate that genuine physical interactions at the individual level are sufficient to set homogeneous active populations into stable directed motion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-roller dynamics.
Figure 2: Transition to directed collective motion.
Figure 3: Propagating-band state.
Figure 4: Polar-liquid state.

Similar content being viewed by others


  1. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Toner, J., Tu, Y. & Ramaswamy, S. Hydrodynamics and phases of flocks. Ann. Phys. 318, 170–244 (2005)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013)

    Article  ADS  CAS  Google Scholar 

  4. Vicsek, T. & Zafeiris, A. Collective motion. Phys. Rep. 517, 71–140 (2012)

    Article  ADS  Google Scholar 

  5. Grégoire, G. & Chaté, H. Onset of collective and cohesive motion. Phys. Rev. Lett. 92, 025702 (2004)

    Article  ADS  Google Scholar 

  6. Buhl, J. et al. From disorder to order in marching locusts. Science 312, 1402–1406 (2006)

    Article  ADS  CAS  Google Scholar 

  7. Schaller, V., Weber, C., Semmrich, C., Frey, E. & Bausch, A. R. Polar patterns of driven filaments. Nature 467, 73–77 (2010)

    Article  ADS  CAS  Google Scholar 

  8. Sumino, Y. et al. Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483, 448–452 (2012)

    Article  ADS  CAS  Google Scholar 

  9. Wioland, H., Woodhouse, F. G., Dunkel, J., Kessler, J. O. & Goldstein, R. E. Confinement stabilizes a bacterial suspension into a spiral vortex. Phys. Rev. Lett. 110, 268102 (2013)

    Article  ADS  Google Scholar 

  10. Zhang, H. P., Be’er, A., Florin, E.-L. & Swinney, H. L. Collective motion and density fluctuations in bacterial colonies. Proc. Natl Acad. Sci. USA 107, 13626–13630 (2010)

    Article  ADS  CAS  Google Scholar 

  11. Theurkauff, I., Cottin-Bizonne, C., Palacci, J., Ybert, C. & Bocquet, L. Dynamic clustering in active colloidal suspensions with chemical signaling. Phys. Rev. Lett. 108, 268303 (2012)

    Article  ADS  CAS  Google Scholar 

  12. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013)

    Article  ADS  CAS  Google Scholar 

  13. Sanchez, T., Chen, D. T. N., DeCamp, S., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012)

    Article  ADS  CAS  Google Scholar 

  14. Deseigne, J., Dauchot, O. & Chaté, H. Collective motion of vibrated polar disks. Phys. Rev. Lett. 105, 098001 (2010)

    Article  ADS  Google Scholar 

  15. Kudrolli, A., Lumay, G., Volfson, D. & Tsimring, L. Swarming and swirling in self-propelled polar granular rods. Phys. Rev. Lett. 100, 058001 (2008)

    Article  ADS  Google Scholar 

  16. Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R. E. & Kessler, J. O. Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103 (2004)

    Article  ADS  Google Scholar 

  17. Aditi Simha, R. & Ramaswamy, S. Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89, 058101 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Quincke, G. Ueber Rotationen im constanten electrischen Felde. Ann. Phys. Chem. 59, 417–486 (1896)

    Article  ADS  Google Scholar 

  19. Melcher, J. R. & Taylor, G. I. Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1, 111–146 (1969)

    Article  ADS  Google Scholar 

  20. O’Loan, O. J. & Evans, M. R. Alternating steady state in one-dimensional flocking. J. Phys. A 32, L99 (1999)

    Article  Google Scholar 

  21. Chaté, H., Ginelli, F., Grégoire, G. & Raynaud, F. Collective motion of self-propelled particles interacting without cohesion. Phys. Rev. E 77, 046113 (2008)

    Article  ADS  Google Scholar 

  22. Bertin, E., Droz, M. & Grégoire, G. Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis. J. Phys. A 42, 445001 (2009)

    Article  Google Scholar 

  23. Hackborn, W. W. Asymmetric Stokes flow between parallel planes due to a rotlet. J. Fluid Mech. 218, 531–546 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  24. Brotto, T., Caussin, J.-B., Lauga, E. & Bartolo, D. Hydrodynamics of confined active fluids. Phys. Rev. Lett. 110, 038101 (2013)

    Article  ADS  Google Scholar 

  25. Farrell, F. D. C., Marchetti, M. C., Marenduzzo, D. & Tailleur, J. Pattern formation in self-propelled particles with density-dependent motility. Phys. Rev. Lett. 108, 248101 (2012)

    Article  ADS  CAS  Google Scholar 

  26. Schaller, V. & Bausch, A. R. Topological defects and density fluctuations in collectively moving systems. Proc. Natl Acad. Sci. USA 110, 4488–4493 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Crocker, J. C. & Grier, G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996)

    Article  ADS  CAS  Google Scholar 

Download references


We acknowledge support from the Paris Emergence programme (D.B.), C’Nano IdF (D.B.) and the Institut Universitaire de France (D.B.). We thank L. S. Tuckerman and H. Chaté for their useful comments and suggestions.

Author information

Authors and Affiliations



A.B. and N.D. performed the experiments. A.B., N.D., O.D. and D.B. analysed the experimental results. D.B. conceived the project and designed the experiments. J.-B.C. and D.B. worked out the theory and wrote the Supplementary Methods. J.-B.C., O.D. and D.B. wrote the paper.

Corresponding author

Correspondence to Denis Bartolo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Text and Data, Supplementary Figures 1-8 and additional references. Additional information is given about the theoretical results outlined in the main paper and the transition to collective motion, and the properties of the polar phases, are investigated from a microscopic model. (PDF 515 kb)

Isotropic state (close view)

E0/EQ = 1.39, Φ0=6x10-4, L=72.6 mm, W=1.0 mm, acquisition rate 180 fps, video frame rate18 fps. (MOV 7475 kb)

Band propagation in a racetrack-shaped confinement

E0/EQ = 1.39, Φ0~10-2, L=72.6 mm, W=1.0 mm, acquisition rate 50 fps, video frame rate 200 fps. (MOV 7427 kb)

Band propagation in a racetrack-shaped confinement (close view)

E0/EQ = 1.39, Φ0~10-2, L=72.6 mm, W=1.0 mm, acquisition rate 180 fps, video frame rate 18 fps. (MOV 7810 kb)

A polar liquid spontaneously flowing in a racetrack-shaped confinement (close view)

E0/EQ = 1.39, Φ0=1.8x10-1, L=72.6 mm, W=1.0 mm, acquisition rate 180 fps, video frame rate 18 fps. (MOV 7521 kb)

Bouncing band in a rectangular confinement.

E0/EQ = 1.39, Φ0=1.1x10-1, L=20 mm, W=1.0 mm, acquisition rate 50 fps, video frame rate fps. (MOV 2554 kb)

A one-million-roller population in a square confinement. Large field of view and zoom in

E0/EQ = 1.39, Φ0=1.1x10-1, L=10 mm, W=10 mm, acquisition rate 25 fps, video frame rate 25 fps. (MOV 27182 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bricard, A., Caussin, JB., Desreumaux, N. et al. Emergence of macroscopic directed motion in populations of motile colloids. Nature 503, 95–98 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing