Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U 1630-47

Abstract

Accreting black holes are known to power relativistic jets, both in stellar-mass binary systems and at the centres of galaxies. The power carried away by the jets, and, hence, the feedback they provide to their surroundings, depends strongly on their composition. Jets containing a baryonic component should carry significantly more energy than electron–positron jets. Energetic considerations1,2 and circular-polarization measurements3 have provided conflicting circumstantial evidence for the presence or absence of baryons in jets, and the only system in which they have been unequivocally detected is the peculiar X-ray binary SS 433 (refs 4, 5). Here we report the detection of Doppler-shifted X-ray emission lines from a more typical black-hole candidate X-ray binary, 4U 1630-47, coincident with the reappearance of radio emission from the jets of the source. We argue that these lines arise from baryonic matter in a jet travelling at approximately two-thirds the speed of light, thereby establishing the presence of baryons in the jet. Such baryonic jets are more likely to be powered by the accretion disk6 than by the spin of the black hole7, and if the baryons can be accelerated to relativistic speeds, the jets should be strong sources of γ-rays and neutrino emission.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Residuals from the continuum modelling of the X-ray spectra.
Figure 2: X-ray observations of 4U 1630-47.

References

  1. Dunn, R. J. H., Fabian, A. C. & Taylor, G. B. Radio bubbles in clusters of galaxies. Mon. Not. R. Astron. Soc. 364, 1343–1353 (2005)

    ADS  CAS  Article  Google Scholar 

  2. Gallo, E. et al. A dark jet dominates the power output of the stellar black hole Cygnus X-1. Nature 436, 819–821 (2005)

    ADS  CAS  Article  PubMed  Google Scholar 

  3. Wardle, J. F. C., Homan, D. C., Ojha, R. & Roberts, D. H. Electron-positron jets associated with the quasar 3C279. Nature 395, 457–461 (1998)

    ADS  CAS  Article  Google Scholar 

  4. Margon, B., Grandi, S. A., Stone, R. P. S. & Ford, H. C. Enormous periodic Doppler shifts in SS 433. Astrophys. J. 233, L63–L68 (1979)

    ADS  CAS  Article  Google Scholar 

  5. Kotani, A. et al. Discovery of the double Doppler-shifted emission-line systems in the X-ray spectrum of SS 433. Publ. Astron. Soc. Jpn 46, L147–L150 (1994)

    ADS  CAS  Google Scholar 

  6. Blandford, R. D. & Payne, D. G. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 199, 883–903 (1982)

    ADS  Article  Google Scholar 

  7. Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1979)

    ADS  Article  Google Scholar 

  8. Miller, J. M. Relativistic X-ray lines from the inner accretion disks around black holes. Annu. Rev. Astron. Astrophys. 45, 441–479 (2007)

    ADS  CAS  Article  Google Scholar 

  9. Kuulkers, E. et al. Absorption dips in the light curves of GRO J1655–40 and 4U 1630–47 during outburst. Astrophys. J. 494, 753–758 (1998)

    ADS  Article  Google Scholar 

  10. Abe, Y., Fukazawa, Y., Kubota, A., Kasama, D. & Makishima, K. Three spectral states of the disk X-ray emission of the black-hole candidate 4U 1630- 47. Publ. Astron. Soc. Jpn 57, 629–641 (2005)

    ADS  CAS  Article  Google Scholar 

  11. Hjellming, R. M. et al. Radio and X-ray observations of the 1998 outburst of the recurrent X-ray transient 4U 1630–47. Astrophys. J. 514, 383–387 (1999)

    ADS  Article  Google Scholar 

  12. Russell, D. M. et al. Testing the jet quenching paradigm with an ultradeep observation of a steadily soft state black hole. Astrophys. J. 739, L19 (2011)

    ADS  Article  Google Scholar 

  13. Cui, W., Chen, W. & Zhang, S. N. Evidence for Doppler-shifted iron emission lines in black hole candidate 4U 1630–47. Astrophys. J. 529, 952–960 (2000)

    ADS  CAS  Article  Google Scholar 

  14. McClintock, J. E. & Remillard, R. A. in Compact Stellar X-ray Sources (eds Lewin, W. H. G. & van der Klis, M. ) 157–213 (Cambridge Univ. Press, 2006)

    Book  Google Scholar 

  15. Augusteijn, T., Kuulkers, E. & van Kerkwijk, M. H. The IR counterpart of the black-hole candidate 4U 1630–47. Astron. Astrophys. 375, 447–454 (2001)

    ADS  Article  Google Scholar 

  16. Mirabel, I. F., Bandyopadhyay, R., Charles, P. A., Shahbaz, T. & Rodriguez, L. F. The superluminal source GRS 1915+105: a high mass X-ray binary? Astrophys. J. 477, L45–L48 (1997)

    ADS  CAS  Article  Google Scholar 

  17. Fender, R. P. et al. Variable circular polarization associated with relativistic ejections from GRS 1915 + 105. Mon. Not. R. Astron. Soc. 336, 39–46 (2002)

    ADS  Article  Google Scholar 

  18. Worrall, D. The X-ray jets of active galaxies. Astron. Astrophys. Rev. 17, 1–46 (2009)

    ADS  Article  Google Scholar 

  19. Heinz, S. Composition, collimation, contamination: the jet of Cygnus X-1. Astrophys. J. 636, 316–322 (2006)

    ADS  CAS  Article  Google Scholar 

  20. Romero, G. E., Torres, D. F., Kaufman Bernadó, M. M. & Mirabel, I. F. Hadronic gamma-ray emission from windy microquasars. Astron. Astrophys. 410, L1–L4 (2003)

    ADS  Article  Google Scholar 

  21. Vila, G. S., Romero, G. E. & Casco, N. A. An inhomogeneous lepto-hadronic model for the radiation of relativistic jets: application to XTE J1118+480. Astron. Astrophys. 538, A97 (2012)

    ADS  Article  Google Scholar 

  22. Tavani, M. et al. Extreme particle acceleration in the microquasar Cygnus X-3. Nature 462, 620–623 (2009)

    ADS  CAS  Article  PubMed  Google Scholar 

  23. The Fermi LAT Collaboration. Modulated high-energy gamma-ray emission from the microquasar Cygnus X-3. Science 326, 1512–1516 (2009)

  24. Piano, G. et al. The AGILE monitoring of Cygnus X-3: transient gamma-ray emission and spectral constraints. Astron. Astrophys. 545, A110 (2012)

    Article  Google Scholar 

  25. Levinson, A. & Waxman, E. Probing microquasars with TeV neutrinos. Phys. Rev. Lett. 87, 171101 (2001)

    ADS  CAS  Article  PubMed  Google Scholar 

  26. Aiello, S. et al. Sensitivity of an underwater Čerenkov km3 telescope to TeV neutrinos from Galactic microquasars. Astropart. Phys. 28, 1–9 (2007)

    ADS  Article  Google Scholar 

  27. Narayan, R. & McClintock, J. E. Observational evidence for a correlation between jet power and black hole spin. Mon. Not. R. Astron. Soc. 419, L69–L73 (2012)

    ADS  Article  Google Scholar 

  28. Russell, D. M., Gallo, E. & Fender, R. P. Observational constraints on the powering mechanism of transient relativistic jets. Mon. Not. R. Astron. Soc. 431, 405–414 (2013)

    ADS  Article  Google Scholar 

  29. Begelman, M. C., Hatchett, S. P., McKee, C. F., Sarazin, C. L. & Arons, J. Beam models for SS 433. Astrophys. J. 238, 722–730 (1980)

    ADS  CAS  Article  Google Scholar 

  30. Marshall, H. L., Canizares, C. R. & Schulz, N. S. The high resolution X-ray spectrum of SS 433 using the Chandra HETGS. Astrophys. J. 564, 941–952 (2002)

    ADS  CAS  Article  Google Scholar 

  31. Guainazzi, M. et al. Evaluation of the spectral calibration accuracy in EPIC-pn fast modes. Technical Note XMM-SOC-CAL-TN-0083; http://xmm.vilspa.esa.es/docs/documents/CAL-TN-0083.pdf (2012)

  32. Done, C. & Díaz Trigo, M. A re-analysis of the iron line in the XMM-Newton data from the low/hard state in GX 339-4. Mon. Not. R. Astron. Soc. 407, 2287–2296 (2010)

    ADS  CAS  Article  Google Scholar 

  33. Ng, C., Díaz Trigo, M., Cadolle Bel, M. & Migliari, S. A systematic analysis of the broad iron Kα line in neutron-star LMXBs with XMM-Newton. Astron. Astrophys. 522, A96 (2010)

    ADS  Article  Google Scholar 

  34. Arnaud, K. A. in Astronomical Data Analysis Software and Systems V (eds Jacoby, G. H. & Barnes, J. ) 17 (ASP Conf. Ser. 101, Astronomical Society of the Pacific, 1996)

    Google Scholar 

  35. Protassov, R., van Dyk, D. A., Connors, A., Kashyap, V. L. & Siemiginowska, A. Statistics, handle with care: detecting multiple model components with the likelihood ratio test. Astrophys. J. 571, 545–559 (2002)

    ADS  Article  Google Scholar 

  36. Miniutti, G. & Fabian, A. C. Discovery of a relativistic Fe line in PG 1425+267 with XMM-Newton and study of its short time-scale variability. Mon. Not. R. Astron. Soc. 366, 115–124 (2006)

    ADS  CAS  Article  Google Scholar 

  37. Wilson, W. E. et al. The Australia Telescope Compact Array Broad-band Backend: description and first results. Mon. Not. R. Astron. Soc. 416, 832–856 (2011)

    ADS  Article  Google Scholar 

  38. Sault, R. J., Teuben, P. J. & Wright, M. C. H. in Astronomical Data Analysis Software and Systems IV (eds Shaw, R. A., Payne, H. E. & Hayes, J. J. E. ) 433–436 (ASP Conf. Ser. 77, Astronomical Society of the Pacific, 1995)

    Google Scholar 

  39. McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. in Astronomical Data Analysis Software and Systems XVI (eds Shaw, R. A., Hill, F. & Bell, D. J. ) 127–130 (ASP Conf. Ser. 376, Astronomical Society of the Pacific, 2007)

    Google Scholar 

Download references

Acknowledgements

This work was based on observations obtained with XMM-Newton, a European Space Agency (ESA) science mission with instruments and contributions directly funded by ESA member states and the USA (NASA). We thank the XMM-Newton team for the fast scheduling of these observations and the EPIC calibration team for advice. ATCA is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. This work was supported by the Australian Research Council’s ‘Discovery Projects’ funding scheme (J.C.A.M.-J.; project number DP120102393), the Spanish Ministerio de Economía y Competitividad and European Social Funds through a Ramón y Cajal Fellowship (S.M.) and the Spanish Ministerio de Ciencia e Innovación (S.M.; grant AYA2010-21782-C03-01). M.D.T. thanks A. Maury, A. Zdziarski and C. Done for discussions, in which regard J.C.A.M.-J. thanks M. Middleton and S.M. thanks G. Romero, V. Bosch-Ramon, G. Miniutti and S. Motta.

Author information

Authors and Affiliations

Authors

Contributions

M.D.T., S.M. and J.C.A.M.-J. had the idea for and designed the observing programme. M.D.T. and S.M. analysed the XMM-Newton observations. J.W.B. and T.T. made the radio observations, which were reduced by J.C.A.M.-J. J.C.A.M.-J. and M.D.T. wrote the manuscript, with help from S.M.

Corresponding author

Correspondence to María Díaz Trigo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Table 1 Observation log
Extended Data Table 2 Quality of the spectral fits (χν2) to the XMM-Newton observations, using different continuum models
Extended Data Table 3 Parameters for each of the best-fit models to the 2–10-keV EPIC pn spectra from the XMM-Newton observations

Supplementary information

Supplementary Information

This file contains Supplementary Text and additional references. (PDF 105 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Trigo, M., Miller-Jones, J., Migliari, S. et al. Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U 1630-47. Nature 504, 260–262 (2013). https://doi.org/10.1038/nature12672

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12672

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing