Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement

Abstract

Flavoproteins catalyse a diversity of fundamental redox reactions and are one of the most studied enzyme families1,2. As monooxygenases, they are universally thought to control oxygenation by means of a peroxyflavin species that transfers a single atom of molecular oxygen to an organic substrate1,3,4. Here we report that the bacterial flavoenzyme EncM5,6 catalyses the peroxyflavin-independent oxygenation–dehydrogenation dual oxidation of a highly reactive poly(β-carbonyl). The crystal structure of EncM with bound substrate mimics and isotope labelling studies reveal previously unknown flavin redox biochemistry. We show that EncM maintains an unexpected stable flavin-oxygenating species, proposed to be a flavin-N5-oxide, to promote substrate oxidation and trigger a rare Favorskii-type rearrangement that is central to the biosynthesis of the antibiotic enterocin. This work provides new insight into the fine-tuning of the flavin cofactor in offsetting the innate reactivity of a polyketide substrate to direct its efficient electrocyclization.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Overview of the Streptomyces maritimus enterocin biosynthetic pathway and proposed EncM catalysis.
Figure 2: Crystal structure of EncM.
Figure 3: Proposed EncM mechanism and spectral features of the flavin cofactor catalytic states.

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

Data deposits

The EncM sequence is deposited in GenBank under accession number AAF81732.1. The structures for proteins described in this paper have been deposited in the Protein Data Bank under accession numbers 3W8W (apo-EncM), 3W8X (EncM with bound 26) and 3W8Z (EncM with bound 4). Data for the crystallized substrate analogues are deposited in the Cambridge Crystallographic Data Centre under accession numbers CCDC 922822 (4), CCDC 922821 (10) and CCDC 949270 (26).

References

  1. 1

    Walsh, C. T. & Wencewicz, T. A. Flavoenzymes: versatile catalysts in biosynthetic pathways. Nat. Prod. Rep. 30, 175–200 (2012)

    Article  Google Scholar 

  2. 2

    Chaiyen, P., Fraaije, M. W. & Mattevi, A. The enigmatic reaction of flavins with oxygen. Trends Biochem. Sci. 37, 373–380 (2012)

    CAS  Article  Google Scholar 

  3. 3

    Massey, V. Activation of molecular oxygen by flavins and flavoproteins. J. Biol. Chem. 269, 22459–22462 (1994)

    CAS  PubMed  Google Scholar 

  4. 4

    Palfey, B. A. & McDonald, C. A. Control of catalysis in flavin-dependent monooxygenases. Arch. Biochem. Biophys. 493, 26–36 (2010)

    CAS  Article  Google Scholar 

  5. 5

    Xiang, L., Kalaitzis, J. A. & Moore, B. S. EncM, a versatile enterocin biosynthetic enzyme involved in Favorskii oxidative rearrangement, aldol condensation, and heterocycle-forming reactions. Proc. Natl Acad. Sci. USA 101, 15609–15614 (2004)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Cheng, Q., Xiang, L., Izumikawa, M., Meluzzi, D. & Moore, B. S. Enzymatic total synthesis of enterocin polyketides. Nature Chem. Biol. 3, 557–558 (2007)

    CAS  Article  Google Scholar 

  7. 7

    Piel, J. et al. Cloning, sequencing and analysis of the enterocin biosynthesis gene cluster from the marine isolate ‘Streptomyces maritimus’: evidence for the derailment of an aromatic polyketide synthase. Chem. Biol. 7, 943–955 (2000)

    CAS  Article  Google Scholar 

  8. 8

    Seto, H., Sato, T., Urano, S., Uzawa, J. & Yonehara, H. Utilization of 13C–13C coupling in structural and biosynthetic studies. VII. The structure and biosynthesis of vulgamycin. Tetrahedr. Lett. 48, 4367–4370 (1976)

    Article  Google Scholar 

  9. 9

    Hertweck, C. et al. Context-dependent behavior of the enterocin iterative polyketide synthase; a new model for ketoreduction. Chem. Biol. 11, 461–468 (2004)

    CAS  Article  Google Scholar 

  10. 10

    Hertweck, C., Luzhetskyy, A., Rebets, Y. & Bechthold, A. Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat. Prod. Rep. 24, 162–190 (2007)

    CAS  Article  Google Scholar 

  11. 11

    Koetter, J. W. & Schulz, G. E. Crystal structure of 6-hydroxy-d-nicotine oxidase from Arthrobacter nicotinovorans. J. Mol. Biol. 352, 418–428 (2005)

    CAS  Article  Google Scholar 

  12. 12

    Huang, C. H. et al. Crystal structure of glucooligosaccharide oxidase from Acremonium strictum: a novel flavinylation of 6-S-cysteinyl, 8α-N1-histidyl FAD. J. Biol. Chem. 280, 38831–38838 (2005)

    CAS  Article  Google Scholar 

  13. 13

    Alexeev, I., Sultana, A., Mantsala, P., Niemi, J. & Schneider, G. Aclacinomycin oxidoreductase (AknOx) from the biosynthetic pathway of the antibiotic aclacinomycin is an unusual flavoenzyme with a dual active site. Proc. Natl Acad. Sci. USA 104, 6170–6175 (2007)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Crosby, J. & Crump, M. P. The structural role of the carrier protein–active controller or passive carrier. Nat. Prod. Rep. 29, 1111–1137 (2012)

    CAS  Article  Google Scholar 

  15. 15

    Baumann, K., Bacher, M., Damont, A. & Steck, A. Selective transformation of ascomycin into 11-epi-ascomycin. Tetrahedr. Lett. 45, 549–551 (2004)

    CAS  Article  Google Scholar 

  16. 16

    Takikawa, H., Takada, A., Hikita, K. & Suzuki, K. Formation of α-hydroxy-β-diketones through hydroxylation of isoxazolium salts: stereoselective approach to angular cis-diols in polycyclic systems. Angew. Chem. Int. Edn Engl. 47, 7446–7449 (2008)

    CAS  Article  Google Scholar 

  17. 17

    Entsch, B., Ballou, D. P. & Massey, V. Flavin–oxygen derivatives involved in hydroxylation by p-hydroxybenzoate hydroxylase. J. Biol. Chem. 251, 2550–2563 (1976)

    CAS  PubMed  Google Scholar 

  18. 18

    Entsch, B. & Ballou, D. P. Purification, properties, and oxygen reactivity of p-hydroxybenzoate hydroxylase from Pseudomonas aeruginosa. Biochim. Biophys. Acta 999, 313–322 (1989)

    CAS  Article  Google Scholar 

  19. 19

    Thotsaporn, K., Chenprakhon, P., Sucharitakul, J., Mattevi, A. & Chaiyen, P. Stabilization of C4a-hydroperoxyflavin in a two-component flavin-dependent monooxygenase is achieved through interactions at flavin N5 and C4a atoms. J. Biol. Chem. 286, 28170–28180 (2011)

    CAS  Article  Google Scholar 

  20. 20

    Valton, J., Mathevon, C., Fontecave, M., Niviere, V. & Ballou, D. P. Mechanism and regulation of the two-component FMN-dependent monooxygenase ActVA-ActVB from Streptomyces coelicolor. J. Biol. Chem. 283, 10287–10296 (2008)

    CAS  Article  Google Scholar 

  21. 21

    Rastetter, W. H., Gadek, T. R., Tane, J. P. & Frost, J. W. Oxidations and oxygen transfers effected by a flavin N(5)-oxide. A model for flavin-dependent monooxygenases. J. Am. Chem. Soc. 101, 2228–2231 (1979)

    CAS  Article  Google Scholar 

  22. 22

    Orf, H. W. & Dolphin, D. Oxaziridines as possible intermediates in flavin monooxygenases. Proc. Natl Acad. Sci. USA 71, 2646–2650 (1974)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Walsh, C. et al. Chemical and enzymatic properties of riboflavin analogues. Biochemistry 17, 1942–1951 (1978)

    CAS  Article  Google Scholar 

  24. 24

    Garman, E. F. & Owen, R. L. Cryocooling and radiation damage in macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 62, 32–47 (2006)

    Article  Google Scholar 

  25. 25

    van Berkel, W. J., Kamerbeek, N. M. & Fraaije, M. W. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J. Biotechnol. 124, 670–689 (2006)

    CAS  Article  Google Scholar 

  26. 26

    Izumikawa, M., Cheng, Q. & Moore, B. S. Priming type II polyketide synthases via a type II nonribosomal peptide synthetase mechanism. J. Am. Chem. Soc. 128, 1428–1429 (2006)

    CAS  Article  Google Scholar 

  27. 27

    Kalaitzis, J. A., Izumikawa, M., Xiang, L., Hertweck, C. & Moore, B. S. Mutasynthesis of enterocin and wailupemycin analogues. J. Am. Chem. Soc. 125, 9290–9291 (2003)

    CAS  Article  Google Scholar 

  28. 28

    Han, L., Lobo, S. & Reynolds, K. A. Characterization of β-ketoacyl-acyl carrier protein synthase III from Streptomyces glaucescens and its role in initiation of fatty acid biosynthesis. J. Bacteriol. 180, 4481–4486 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Jez, J. M., Ferrer, J. L., Bowman, M. E., Dixon, R. A. & Noel, J. P. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry 39, 890–902 (2000)

    CAS  Article  Google Scholar 

  30. 30

    Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    CAS  Article  Google Scholar 

  31. 31

    Leslie, A. G. W. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 ESF-EAMCB Newsl. Prot. Crystallogr. 26, 27–33 (1992)

    Google Scholar 

  32. 32

    Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 (2010)

    CAS  Article  Google Scholar 

  33. 33

    Morris, R. J., Perrakis, A. & Lamzin, V. S. ARP/wARP’s model-building algorithms. I. The main chain. Acta Crystallogr. D Biol. Crystallogr. 58, 968–975 (2002)

    Article  Google Scholar 

  34. 34

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004)

    Article  Google Scholar 

  35. 35

    Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997)

    CAS  Article  Google Scholar 

  36. 36

    DeLano, W. L. The PyMOL Molecular Graphics System (DeLano Scientific LLC, 2002)

    Google Scholar 

  37. 37

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010)

    CAS  Article  Google Scholar 

  38. 38

    Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006)

    CAS  Article  Google Scholar 

  39. 39

    Tovchigrechko, A. & Vakser, I. A. GRAMM-X public web server for protein–protein docking. Nucleic Acids Res. 34, W310–W314 (2006)

    CAS  Article  Google Scholar 

  40. 40

    Guex, N. & Peitsch, M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Bowman for technical assistance; Y. Su for mass spectrometric measurements; D.-H. Huang and L. Pasternack for NMR spectroscopic assistance; A. Rheingold for X-ray crystallographic analysis; and C. Hertweck for establishing the synthesis of 26. This research was supported by US National Institutes of Health grant R01AI47818 to B.S.M., National Science Foundation (NSF) awards EEC-0813570 and MCB-0645794 and the Howard Hughes Medical Institute for grants to J.P.N., NSF grant CHE-1213620 to B.P., and fellowships to R.T. from the Deutsche Forschungsgemeinschaft (TE 931/1-1) and to A.M. from the Japan Society for the Promotion of Science (21-644).

Author information

Affiliations

Authors

Contributions

R.T., A.M., Q.M., F.S., G.L. and J.P.N. performed research. All authors designed research and analysed data. R.T. and B.M. wrote the paper. R.T., A.M., Q.M. and F.S. contributed equally to this work.

Corresponding author

Correspondence to Bradley S. Moore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Information, which is divided into parts 1 and 2: (1) Supplementary Figures 1-26, Supplementary Tables 1-17, Supplementary Text and Data (pages 3-58) and (2) NMR spectra of all chemically synthesized compounds (pages 60-86), see Contents 1 and 2 (page 59) for more details. (PDF 10595 kb)

PowerPoint slides

41586_2013_BFnature12643_MOESM451_ESM.ppt

PowerPoint slide for Fig. 1

41586_2013_BFnature12643_MOESM452_ESM.ppt

PowerPoint slide for Fig. 2

41586_2013_BFnature12643_MOESM453_ESM.ppt

PowerPoint slide for Fig. 3

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Teufel, R., Miyanaga, A., Michaudel, Q. et al. Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement. Nature 503, 552–556 (2013). https://doi.org/10.1038/nature12643

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing