Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tumour heterogeneity in the clinic



Recent therapeutic advances in oncology have been driven by the identification of tumour genotype variations between patients, called interpatient heterogeneity, that predict the response of patients to targeted treatments. Subpopulations of cancer cells with unique genomes in the same patient may exist across different geographical regions of a tumour or evolve over time, called intratumour heterogeneity. Sequencing technologies can be used to characterize intratumour heterogeneity at diagnosis, monitor clonal dynamics during treatment and identify the emergence of clinical resistance during disease progression. Genetic interpatient and intratumour heterogeneity can pose challenges for the design of clinical trials that use these data.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Clinical-trial design frameworks.


  1. 1

    Tran, B. et al. Cancer genomics: technology, discovery, and translation. J. Clin. Oncol. 30, 647–660 (2012).

    PubMed  Google Scholar 

  2. 2

    Mok, T. S. et al. Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    CAS  PubMed  Google Scholar 

  3. 3

    De Roock, W. et al. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann. Oncol. 19, 508–515 (2008).

    CAS  PubMed  Google Scholar 

  4. 4

    Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    CAS  PubMed  Google Scholar 

  6. 6

    Karapetis, C. S. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 359, 1757–1765 (2008).

    CAS  PubMed  Google Scholar 

  7. 7

    Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    ADS  CAS  PubMed  Google Scholar 

  8. 8

    Amir, E. et al. Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J. Clin. Oncol. 30, 587–592 (2012).

    PubMed  Google Scholar 

  9. 9

    Gong, Y., Han, E. Y., Guo, M., Pusztai, L. & Sneige, N. Stability of estrogen receptor status in breast carcinoma. Cancer 117, 705–713 (2011).

    PubMed  Google Scholar 

  10. 10

    Thompson, A. M. et al. Prospective comparison of switches in biomarker status between primary and recurrent breast cancer: the Breast Recurrence In Tissues Study (BRITS). Breast Cancer Res. 12, R92 (2010).

    ADS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Chang, H. J. et al. Discordant human epidermal growth factor receptor 2 and hormone receptor status in primary and metastatic breast cancer and response to trastuzumab. Jpn. J. Clin. Oncol. 41, 593–599 (2011).

    ADS  PubMed  Google Scholar 

  12. 12

    Early Breast Cancer Trialists' Collaborative Group. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378, 771–784 (2011).

  13. 13

    Lindström, L. S. et al. Clinically used breast cancer markers such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor progression. J. Clin. Oncol. 30, 2601–2608 (2012).

    PubMed  Google Scholar 

  14. 14

    Liedtke, C. et al. Prognostic impact of discordance between triple-receptor measurements in primary and recurrent breast cancer. Ann. Oncol. 20, 1953–1958 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Tapia, C. et al. HER2 gene status in primary breast cancers and matched distant metastases. Breast Cancer Res. 9, R31 (2007).

    PubMed  PubMed Central  Google Scholar 

  16. 16

    Artale, S. et al. Mutations of KRAS and BRAF in primary and matched metastatic sites of colorectal cancer. J. Clin. Oncol. 26, 4217–4219 (2008).

    PubMed  Google Scholar 

  17. 17

    Kalikaki, A. et al. Comparison of EGFR and K-RAS gene status between primary tumours and corresponding metastases in NSCLC. Br. J. Cancer 99, 923–929 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Kim, H. et al. Discordance between anaplastic lymphoma kinase status in primary non-small-cell lung cancers and their corresponding metastases. Histopathology 62, 305–314 (2013).

    PubMed  Google Scholar 

  19. 19

    Weller, M. et al. MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nature Rev. Neurol. 6, 39–51 (2010).

    CAS  Google Scholar 

  20. 20

    Bozzetti, C. et al. Comparison of HER2 status in primary and paired metastatic sites of gastric carcinoma. Br. J. Cancer 104, 1372–1376 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Kim, M. A., Lee, H. J., Yang, H. K., Bang, Y. J. & Kim, W. H. Heterogeneous amplification of ERBB2 in primary lesions is responsible for the discordant ERBB2 status of primary and metastatic lesions in gastric carcinoma. Histopathology 59, 822–831 (2011).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Knijn, N. et al. KRAS mutation analysis: a comparison between primary tumours and matched liver metastases in 305 colorectal cancer patients. Br. J. Cancer 104, 1020–1026 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Yancovitz, M. et al. Intra-and inter-tumor heterogeneity of BRAFV600E mutations in primary and metastatic melanoma. PLoS ONE 7, e29336 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Niikura, N. et al. Loss of human epidermal growth factor receptor 2 (HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors. J. Clin. Oncol. 30, 593–599 (2012).

    PubMed  Google Scholar 

  25. 25

    Fidler, I. J. & Hart, I. R. Biological diversity in metastatic neoplasms: origins and implications. Science 217, 998–1003 (1982).

    ADS  CAS  PubMed  Google Scholar 

  26. 26

    Starczynski, J. et al. HER2 gene amplification in breast cancer: a rogues' gallery of challenging diagnostic cases: UKNEQAS interpretation guidelines and research recommendations. Am. J. Clin. Pathol. 137, 595–605 (2012).

    PubMed  Google Scholar 

  27. 27

    Yoon, H. H. et al. Adverse prognostic impact of intratumor heterogeneous HER2 gene amplification in patients with esophageal adenocarcinoma. J. Clin. Oncol. 30, 3932–3938 (2012).

    PubMed  PubMed Central  Google Scholar 

  28. 28

    Perez, K. et al. Heterogeneity of colorectal cancer (CRC) in reference to KRAS proto-oncogene utilizing WAVE technology. Exp. Mol. Pathol. 95, 74–82 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Wilmott, J. S. et al. Intratumoral molecular heterogeneity in a BRAF-mutant, BRAF inhibitor-resistant melanoma: a case illustrating the challenges for personalized medicine. Mol. Cancer Ther. 11, 2704–2708 (2012).

    CAS  PubMed  Google Scholar 

  30. 30

    Taniguchi, K., Okami, J., Kodama, K., Higashiyama, M. & Kato, K. Intratumor heterogeneity of epidermal growth factor receptor mutations in lung cancer and its correlation to the response to gefitinib. Cancer Sci. 99, 929–935 (2008).

    CAS  PubMed  Google Scholar 

  31. 31

    Sakurada, A., Lara-Guerra, H., Liu, N., Shepherd, F. A. & Tsao, M.-S. Tissue heterogeneity of EGFR mutation in lung adenocarcinoma. J. Thorac. Oncol. 3, 527–529 (2008).

    PubMed  Google Scholar 

  32. 32

    Rye, I. et al. Intra-tumor heterogeneity as a predictor of therapy response in HER2 positive breast cancer. Cancer Res. 72, (24 suppl.) P3–05–04 (2012).

    ADS  Google Scholar 

  33. 33

    Tougeron, D. et al. Effect of low-frequency KRAS mutations on the response to anti-EGFR therapy in metastatic colorectal cancer. Ann. Oncol. 24, 1267–1273 (2013).

    CAS  PubMed  Google Scholar 

  34. 34

    Bai, H. et al. Detection and clinical significance of intratumoral EGFR mutational heterogeneity in Chinese patients with advanced non-small cell lung cancer. PLoS ONE 8, e54170 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Coons, S. W., Johnson, P. C. & Shapiro, J. R. Cytogenetic and flow cytometry DNA analysis of regional heterogeneity in a low grade human glioma. Cancer Res. 55, 1569–1577 (1995).

    CAS  PubMed  Google Scholar 

  36. 36

    Walter, M. J. et al. Clonal architecture of secondary acute myeloid leukemia. N. Engl. J. Med. 366, 1090–1098 (2012). This study reconstructs the clonal evolution of secondary acute myeloid leukaemia from myelodysplastic syndrome, demonstrating that a single population of myelodysplastic syndrome cells underwent multiple rounds of mutation and selection.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Newburger, D. E. et al. Genome evolution during progression to breast cancer. Genome Res. 23, 1097–1108 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009). This was the first study to demonstrate how genome sequencing can be used to follow the evolution of a solid tumour from early to advanced stage.

    ADS  CAS  PubMed  Google Scholar 

  39. 39

    Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Campbell, P. J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010). References 39 and 40 describe how genomic instability drives clonal evolution in metastatic pancreatic cancers.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Diaz, L. A. Jr et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Misale, S. et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486, 532–536 (2012). References 42 and 43 demonstrate how KRAS -mutant subclones in colorectal cancer can emerge under the selection pressure of EGFR antibody therapy to confer treatment resistance.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Shah, S. P. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486, 395–399 (2012). This study demonstrates wide variety of clonal and mutational composition in 104 primary triple-negative breast cancers.

    ADS  CAS  PubMed  Google Scholar 

  45. 45

    Aparicio, S. & Caldas, C. The implications of clonal genome evolution for cancer medicine. N. Engl. J. Med. 368, 842–851 (2013).

    CAS  PubMed  Google Scholar 

  46. 46

    Buttitta, F. et al. Effective assessment of egfr mutation status in bronchoalveolar lavage and pleural fluids by next-generation sequencing. Clin. Cancer Res. 19, 691–698 (2013).

    CAS  PubMed  Google Scholar 

  47. 47

    Kinde, I. et al. Evaluation of DNA from the papanicolaou test to detect ovarian and endometrial cancers. Sci. Transl. Med. 5, 167ra164 (2013).

    Google Scholar 

  48. 48

    Maheswaran, S. et al. Detection of Mutations in EGFR in Circulating Lung-Cancer Cells. N. Engl. J. Med. 359, 366–377 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Leary, R. J. et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci. Transl. Med. 4, 162ra154 (2012).

    PubMed  PubMed Central  Google Scholar 

  50. 50

    Chan, K. C. A. et al. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin. Chem. 59, 211–224 (2013).

    CAS  PubMed  Google Scholar 

  51. 51

    Forshew, T. et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med. 4, 136ra168 (2012).

    Google Scholar 

  52. 52

    Dawson, S.-J. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013). References 51 and 52 used targeted sequencing of circulating tumour DNA to monitor tumour dynamics in patients with advanced solid tumours.

    CAS  PubMed  Google Scholar 

  53. 53

    Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004).

    CAS  PubMed  Google Scholar 

  54. 54

    Murtaza, M. et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497, 108–112 (2013). This study shows that exome sequencing of circulating tumour DNA can be used to track genomic evolution of metastatic cancers in response to therapy.

    ADS  CAS  PubMed  Google Scholar 

  55. 55

    Lipson, D. et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nature Med. 18, 382–384 (2012).

    CAS  PubMed  Google Scholar 

  56. 56

    Beltran, H. et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur. Urol. 63, 920–926 (2013).

    CAS  PubMed  Google Scholar 

  57. 57

    Swanton, C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 72, 4875–4882 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    CLIA. Medicare, Medicaid and CLIA programs: regulations implementing the clinical laboratory improvement amendments of 1988. Fed. Regist. 57, 7002–7186 (1992).

  59. 59

    Wagle, N. et al. High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov. 2, 82–93 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Bedard, P. et al. Princess Margaret Cancer Centre (PMCC) Integrated Molecular Profiling in Advanced Cancers Trial (IMPACT) using genotyping and targeted next-generation sequencing (NGS). J. Clin. Oncol. 31, 11002 (2013).

    Google Scholar 

  61. 61

    Miller, V. et al. Use of next-generation sequencing (NGS) to identify actionable genomic alterations (GA) in diverse solid tumor types: The Foundation Medicine (FMI) experience with 2,200+ clinical samples. J. Clin. Oncol. 31, 11020 (2013). References 59–61 show that next-generation sequencing technology can be applied to stored formalin-fixed, paraffin-embedded tumour samples in a clinical setting.

    Google Scholar 

  62. 62

    Gargis, A. S. et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nature Biotechnol. 30, 1033–1036 (2012).

    CAS  Google Scholar 

  63. 63

    Tran, B. et al. Feasibility of real time next generation sequencing of cancer genes linked to drug response: results from a clinical trial. Int. J. Cancer 132, 1547–1555 (2013).

    CAS  PubMed  Google Scholar 

  64. 64

    Dancey, J. E., Bedard, P. L., Onetto, N. & Hudson, T. J. The genetic basis for cancer treatment decisions. Cell 148, 409–420 (2012).

    CAS  PubMed  Google Scholar 

  65. 65

    Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Kopetz, S. et al. PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors. J. Clin. Oncol. 28, 3534 (2010).

    Google Scholar 

  67. 67

    Barretina, J. et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Papillon-Cavanagh, S. et al. Comparison and validation of genomic predictors for anticancer drug sensitivity. J. Am. Med. Inform. Assoc. 20, 597–602 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. 70

    Begley, C. G. & Ellis, L. M. Drug development: raise standards for preclinical cancer research. Nature 483, 531–533 (2012).

    ADS  CAS  PubMed  Google Scholar 

  71. 71

    Sleijfer, S., Bogaerts, J. & Siu, L. L. Designing transformative clinical trials in the cancer genome era. J. Clin. Oncol. 31, 1834–1841 (2013).

    PubMed  Google Scholar 

  72. 72

    Dienstmann, R. et al. Molecular profiling of patients with colorectal cancer and matched targeted therapy in phase I clinical trials. Mol. Cancer Ther. 11, 2062–2071 (2012).

    CAS  PubMed  Google Scholar 

  73. 73

    Tsimberidou, A.-M. et al. Personalized medicine in a phase I clinical trials program: the MD Anderson Cancer Center Initiative. Clin. Cancer Res. 18, 6373–6383 (2012). This study demonstrates that matching investigational treatment to genotype results in better response and survival.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Rodón, J. et al. Molecular prescreening to select patient population in early clinical trials. Nature Rev. Clin. Oncol. 9, 359–366 (2012).

    Google Scholar 

  75. 75

    Hollebecque, A. et al. Molecular screening for cancer treatment optimization (MOSCATO 01): a prospective molecular triage trial — interim results. J. Clin. Oncol. 31, 2512 (2013).

    Google Scholar 

  76. 76

    Kaplan, R. & Brown, L. MRC FOCUS 4: a New Trial Biomarker-Stratified Phase 2/3 Trial Design (Medical Research Council, 2013).

    Google Scholar 

  77. 77

    Kim, E. S. et al. The BATTLE Trial: personalizing therapy for lung cancer. Cancer Discov. 1, 44–53 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Barker, A. D. et al. I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin. Pharmacol. Ther. 86, 97–100 (2009).

    CAS  PubMed  Google Scholar 

  79. 79

    Berry, D. A., Herbst, R. S. & Rubin, E. H. Reports from the 2010 Clinical and Translational Cancer Research Think Tank Meeting: design strategies for personalized therapy trials. Clin. Cancer Res. 18, 638–644 (2012).

    PubMed  PubMed Central  Google Scholar 

  80. 80

    Lillie, E. O. et al. The n-of-1 clinical trial: the ultimate strategy for individualizing medicine? Per. Med. 8, 161–173 (2011).

    PubMed  PubMed Central  Google Scholar 

  81. 81

    Gabler, N. B., Duan, N., Vohra, S. & Kravitz, R. L. N-of-1 trials in the medical literature: a systematic review. Med. Care 49, 761–768 (2011).

    PubMed  Google Scholar 

  82. 82

    Mick, R., Crowley, J. J. & Carroll, R. J. Phase II clinical trial design for noncytotoxic anticancer agents for which time to disease progression is the primary endpoint. Control. Clin. Trials 21, 343–359 (2000).

    CAS  PubMed  Google Scholar 

  83. 83

    Kurzrock, R. & Tabernero, J. WINTHER — WIN Therapeutics Clinical Trial. (WIN Consortium, 2012). This describes an ongoing prospective clinical trial that selects targeted treatment for patients with advanced solid tumours based upon DNA, RNA and microRNA profiling.

    Google Scholar 

  84. 84

    Wu, X. et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 482, 529–533 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Tao, Y. et al. Rapid growth of a hepatocellular carcinoma and the driving mutations revealed by cell-population genetic analysis of whole-genome data. Proc. Natl Acad. Sci. USA 108, 12042–12047 (2011).

    ADS  CAS  PubMed  Google Scholar 

  86. 86

    Albiges, L., Gerlinger, M. & PREDICT consortium. The PREDICT (Personalised RNA Interference to Enhance the Delivery of Individualised Cytotoxic and Targeted Therapeutics) approach to biomarker discovery in renal cell carcinoma. Cancer Res. 72, S1746 (2012).

    Google Scholar 

  87. 87

    Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012). This study demonstrates mutational intratumour heterogeneity within spatially separated regions of the same tumour and matched primary and metastatic lesions separated by time.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Tolmachev, V., Stone-Elander, S. & Orlova, A. Radiolabelled receptor-tyrosine-kinase targeting drugs for patient stratification and monitoring of therapy response: prospects and pitfalls. Lancet Oncol. 11, 992–1000 (2010).

    CAS  PubMed  Google Scholar 

  89. 89

    Gasch, C. et al. Heterogeneity of epidermal growth factor receptor status and mutations of KRAS/PIK3CA in circulating tumor cells of patients with colorectal cancer. Clin. Chem. 59, 252–260 (2013).

    CAS  PubMed  Google Scholar 

  90. 90

    Schwarzenbach, H., Hoon, D. S. & Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nature Rev. Cancer 11, 426–437 (2011).

    CAS  Google Scholar 

  91. 91

    Jang, M. H. et al. FGFR1 is amplified during the progression of in situ to invasive breast carcinoma. Breast Cancer Res. 14, R115 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Johnson, C. E. et al. Identification of copy number alterations associated with the progression of DCIS to invasive ductal carcinoma. Breast Cancer Res. Treat. 133, 889–898 (2012).

    CAS  PubMed  Google Scholar 

  93. 93

    Heselmeyer-Haddad, K. et al. Single-cell genetic analysis of ductal carcinoma in situ and invasive breast cancer reveals enormous tumor heterogeneity yet conserved genomic imbalances and gain of MYC during progression. Am. J. Pathol. 181, 1807–1822 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

  95. 95

    Xu, X. et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148, 886–895 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Hou, Y. et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148, 873–885 (2012).

    CAS  PubMed  Google Scholar 

  97. 97

    Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Xu, X. et al. Mutational analysis of circulating tumor cells in breast cancer patients by targeted clonal sequencing. J. Clin. Oncol. 30, 10516 (2012).

    Google Scholar 

  99. 99

    Baselga, J. et al. Everolimus in postmenopausal hormone-receptor–positive advanced breast cancer. N. Engl. J. Med. 366, 520–529 (2012).

    CAS  PubMed  Google Scholar 

  100. 100

    Turner, N. C. & Reis-Filho, J. S. Genetic heterogeneity and cancer drug resistance. Lancet Oncol. 13, e178–e185 (2012).

    PubMed  Google Scholar 

  101. 101

    Melcher, C. et al. DETECT III — a multicenter, randomized, phase III study to compare standard therapy alone versus standard therapy plus lapatinib in patients with initially HER2-negative metastatic breast cancer but with HER2-positive circulating tumor cells. Cancer Res. 72, SOT1–1-10 (2012).

    Google Scholar 

  102. 102

    Elisei, R. et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J. Clin. Endocrinol. Metab. 93, 682–687 (2008).

    CAS  PubMed  Google Scholar 

  103. 103

    Park, S. et al. Discordance of molecular biomarkers associated with epidermal growth factor receptor pathway between primary tumors and lymph node metastasis in non-small cell lung cancer. J. Thorac. Oncol. 4, 809–815 (2009).

    PubMed  Google Scholar 

  104. 104

    Schmid, K. et al. EGFR/KRAS/BRAF mutations in primary lung adenocarcinomas and corresponding locoregional lymph node metastases. Clin. Cancer Res. 15, 4554–4560 (2009).

    CAS  Google Scholar 

  105. 105

    Kim, H. et al. Detection of ALK gene rearrangement in non-small cell lung cancer: a comparison of fluorescence in situ hybridization and chromogenic in situ hybridization with correlation of ALK protein expression. J. Thorac. Oncol. 6, 1359–1366 (2011).

    PubMed  Google Scholar 

  106. 106

    Janjigian, Y. Y. et al. Prognosis of metastatic gastric and gastroesophageal junction cancer by HER2 status: a European and USA International collaborative analysis. Ann. Oncol. 23, 2656–2662 (2012).

    CAS  PubMed  Google Scholar 

  107. 107

    Bang, Y.-J. et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).

    CAS  PubMed  Google Scholar 

  108. 108

    Vakiani, E. et al. Comparative genomic analysis of primary versus metastatic colorectal carcinomas. J. Clin. Oncol. 30, 2956–2962 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Colombino, M. et al. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J. Clin. Oncol. 30, 2522–2529 (2012).

    PubMed  Google Scholar 

  110. 110

    Antonescu, C. R. et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin. Cancer Res. 11, 4182–4190 (2005).

    CAS  PubMed  Google Scholar 

  111. 111

    Heinrich, M. C. et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J. Clin. Oncol. 24, 4764–4774 (2006).

    CAS  PubMed  Google Scholar 

  112. 112

    Walker, I. et al. Utilizing a collaborative working model to optimize molecular analysis of solid tumors in the Cancer Research UK's stratified medicine programme. J. Clin. Oncol. 31, 11094 (2013).

    Google Scholar 

  113. 113

    Rollins, B. et al. PROFILE: Broadly based genomic testing for all patients at a major cancer center. J. Clin. Oncol. 31, 1531 (2013).

    Google Scholar 

  114. 114

    Sequist, L. V. et al. Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann. Oncol. 22, 2616–2624 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    MD Anderson Cancer Center. The Sheik Khalifa Bin Zayed Al Nayan Institute for Personalized Cancer Therapy (MD Anderson Cancer Center, 2012).

  116. 116

    Mendelson, J. Personalizing oncology: perspectives and prospects. J. Clin. Oncol. 31, 1904–1911 (2013).

    Google Scholar 

  117. 117

    Voest, E. Delivering Stratified Medicine: a Strategic Overview. (EACR, 2012).

    Google Scholar 

  118. 118

    Callaway, E. Norway to bring cancer gene tests to the clinic. Nature (2 February, 2012).

  119. 119

    Vall d'Hebron Institute of Oncology. Cancer Genomics Group. (Vall d'Hebron Institute of Oncology, 2010).

  120. 120

    Vanderbilt-Ingram Cancer Center. Personalized Cancer Therapy at Vanderbilt-Ingram Cancer Center. (Vanderbilt-Ingram Cancer Center, 2011).

  121. 121

    Garraway, L. A. Genomics-Driven Clinical Trials in Oncology: principles and practice. (Institute of Medicine, 2013).

    Google Scholar 

  122. 122

    Getz, M. & Boughey, J. Breast Cancer Genome Guided Therapy Study (BEAUTY). (Mayo Clinic, 2012).

    Google Scholar 

  123. 123

    Kummar, S. Challenges in Incorporating Integral NGS into Early Clinical Trials. (National Cancer Institute, 2012).

    Google Scholar 

  124. 124

    Williams, P. Request for Information (RFI): Efficient Implementation of a Sequencing Network for the Proposed NCI-MATCH Clinical Trial. (Fort Detrick Business Development Office, 2013).

    Google Scholar 

Download references


Supported in part by the Cancer Care Ontario Applied Cancer Research Units Grant (P.L.B, L.L.S) and by the US National Institute of Health Grant U01 GM61393 (M.J.R).

Author information



Corresponding author

Correspondence to Lillian L. Siu.

Ethics declarations

Competing interests

P.L.B. is a consultant for Roche/Genentech, Novartis and Sanofi, receives research funding (clinical trials) from Roche/Genentech, GlazoSmithKline, Novaris, Sanofi and Servier. M.J.R is a consultant (DSMB chair) for Roche/Genentec, a consultant for Daiichi Sankyo and receives research funding (clinical trial) from Bristol-Myers Squibb. L.L.S receives research funding (clinical trial) from Bristol-Myers Squibb, GlaxoSmithKline, Novartis and Roche/Genentech

Additional information

Reprints and permissions information is available at

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bedard, P., Hansen, A., Ratain, M. et al. Tumour heterogeneity in the clinic. Nature 501, 355–364 (2013).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing