Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Precision is essential for efficient catalysis in an evolved Kemp eliminase


Linus Pauling established the conceptual framework for understanding and mimicking enzymes more than six decades ago1. The notion that enzymes selectively stabilize the rate-limiting transition state of the catalysed reaction relative to the bound ground state reduces the problem of design to one of molecular recognition. Nevertheless, past attempts to capitalize on this idea, for example by using transition state analogues to elicit antibodies with catalytic activities2, have generally failed to deliver true enzymatic rates. The advent of computational design approaches, combined with directed evolution, has provided an opportunity to revisit this problem. Starting from a computationally designed catalyst for the Kemp elimination3—a well-studied model system for proton transfer from carbon—we show that an artificial enzyme can be evolved that accelerates an elementary chemical reaction 6 × 108-fold, approaching the exceptional efficiency of highly optimized natural enzymes such as triosephosphate isomerase. A 1.09 Å resolution crystal structure of the evolved enzyme indicates that familiar catalytic strategies such as shape complementarity and precisely placed catalytic groups can be successfully harnessed to afford such high rate accelerations, making us optimistic about the prospects of designing more sophisticated catalysts.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kemp elimination.
Figure 2: Directed evolution of Kemp eliminase HG3.
Figure 3: Crystal structure of HG3.17 complexed with 6-nitrobenzotriazole.
Figure 4: Catalytic improvement of HG3.

Accession codes


Protein Data Bank

Data deposits

The crystal structure of HG3.17 was deposited in the RCSB Protein Data Bank (PDB) under the accession number 4BS0.


  1. Pauling, L. Molecular architecture and biological reactions. Chem. Eng. News 24, 1375–1377 (1946)

    Article  CAS  Google Scholar 

  2. Hilvert, D. Critical analysis of antibody catalysis. Annu. Rev. Biochem. 69, 751–793 (2000)

    Article  CAS  Google Scholar 

  3. Privett, H. K. et al. Iterative approach to computational enzyme design. Proc. Natl Acad. Sci. USA 109, 3790–3795 (2012)

    Article  ADS  CAS  Google Scholar 

  4. Albery, W. J. & Knowles, J. R. Free-energy profile for the reaction catalyzed by triosephosphate isomerase. Biochemistry 15, 5627–5631 (1976)

    Article  CAS  Google Scholar 

  5. Blacklow, S. C., Raines, R. T., Lim, W. A., Zamore, P. D. & Knowles, J. R. Triosephosphate isomerase catalysis is diffusion controlled. Biochemistry 27, 1158–1165 (1988)

    Article  CAS  Google Scholar 

  6. Knowles, J. R. Enzyme catalysis: not different, just better. Nature 350, 121–124 (1991)

    Article  ADS  CAS  Google Scholar 

  7. Wierenga, R. K., Kapetaniou, E. G. & Venkatesan, R. Triosephosphate isomerase: A highly evolved biocatalyst. Cell. Mol. Life Sci. 67, 3961–3982 (2010)

    Article  CAS  Google Scholar 

  8. Richard, J. P. A paradigm for enzyme-catalyzed proton transfer at carbon: Triosephosphate isomerase. Biochemistry 51, 2652–2661 (2012)

    Article  CAS  Google Scholar 

  9. Casey, M. L., Kemp, D. S., Paul, K. G. & Cox, D. D. Physical organic-chemistry of benzisoxazoles. 1. Mechanism of base-catalyzed decomposition of benzisoxazoles. J. Org. Chem. 38, 2294–2301 (1973)

    Article  CAS  Google Scholar 

  10. Richard, J. P. Acid-base catalysis of the elimination and isomerization-reactions of triose phosphates. J. Am. Chem. Soc. 106, 4926–4936 (1984)

    Article  CAS  Google Scholar 

  11. Thorn, S. N., Daniels, R. G., Auditor, M. T. M. & Hilvert, D. Large rate accelerations in antibody catalysis by strategic use of haptenic charge. Nature 373, 228–230 (1995)

    Article  ADS  CAS  Google Scholar 

  12. Röthlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008)

    Article  ADS  Google Scholar 

  13. Korendovych, I. V. et al. Design of a switchable eliminase. Proc. Natl Acad. Sci. USA 108, 6823–6827 (2011)

    Article  ADS  CAS  Google Scholar 

  14. Khersonsky, O. et al. Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59. Proc. Natl Acad. Sci. USA 109, 10358–10363 (2012)

    Article  ADS  CAS  Google Scholar 

  15. Putman, S. J., Coulson, A. F. W., Farley, I. R. T., Riddleston, B. & Knowles, J. R. Specificity and kinetics of triose phosphate isomerase from chicken muscle. Biochem. J. 129, 301–310 (1972)

    Article  CAS  Google Scholar 

  16. Wolfenden, R. Enzyme catalysis: Conflicting requirements of substrate access and transition-state affinity. Mol. Cell. Biochem. 3, 207–211 (1974)

    Article  CAS  Google Scholar 

  17. Herschlag, D. The role of induced fit and conformational changes of enzymes in specificity and catalysis. Bioorg. Chem. 16, 62–96 (1988)

    Article  CAS  Google Scholar 

  18. Hu, Y., Houk, K. N., Kikuchi, K., Hotta, K. & Hilvert, D. Nonspecific medium effects versus specific group positioning in the antibody and albumin catalysis of the base-promoted ring-opening reactions of benzisoxazoles. J. Am. Chem. Soc. 126, 8197–8205 (2004)

    Article  CAS  Google Scholar 

  19. Debler, E. W. et al. Structural origins of efficient proton abstraction from carbon by a catalytic antibody. Proc. Natl Acad. Sci. USA 102, 4984–4989 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Gandour, R. D. On the importance of orientation in general base catalysis by carboxylate. Bioorg. Chem. 10, 169–176 (1981)

    Article  CAS  Google Scholar 

  21. Bryan, P., Pantoliano, M. W., Quill, S. G., Hsiao, H. Y. & Poulos, T. Site-directed mutagenesis and the role of the oxyanionhole in subtilisin. Proc. Natl Acad. Sci. USA 83, 3743–3745 (1986)

    Article  ADS  CAS  Google Scholar 

  22. Na, J., Houk, K. N. & Hilvert, D. Transition state of the base-promoted ring-opening of isoxazoles. Theoretical prediction of catalytic functionalities and design of haptens for antibody production. J. Am. Chem. Soc. 118, 6462–6471 (1996)

    Article  CAS  Google Scholar 

  23. Frushicheva, M. P., Cao, J., Chu, Z. T. & Warshel, A. Exploring challenges in rational enzyme design by simulating the catalysis in artificial Kemp eliminase. Proc. Natl Acad. Sci. USA 107, 16869–16874 (2010)

    Article  ADS  CAS  Google Scholar 

  24. Albery, W. J. & Knowles, J. R. Evolution of enzyme function and the development of catalytic efficiency. Biochemistry 15, 5631–5640 (1976)

    Article  CAS  Google Scholar 

  25. Voigt, C. A., Gordon, D. B. & Mayo, S. L. Trading accuracy for speed: A quantitative comparison of search algorithms in protein sequence design. J. Mol. Biol. 299, 789–803 (2000)

    Article  CAS  Google Scholar 

  26. Warshel, A. et al. Electrostatic basis for enzyme catalysis. Chem. Rev. 106, 3210–3235 (2006)

    Article  CAS  Google Scholar 

  27. Allen, B. D., Nisthal, A. & Mayo, S. L. Experimental library screening demonstrates the successful application of computational protein design to large structural ensembles. Proc. Natl Acad. Sci. USA 107, 19838–19843 (2010)

    Article  ADS  CAS  Google Scholar 

  28. Kiss, G., Röthlisberger, D., Baker, D. & Houk, K. N. Evaluation and ranking of enzyme designs. Protein Sci. 19, 1760–1773 (2010)

    Article  CAS  Google Scholar 

  29. Kiss, G., Çelebi-Ölçüm, N., Moretti, R., Baker, D. & Houk, K. N. Computational enzyme design. Angew. Chem. Int. Ed. Engl. 52, 5700–5725 (2013)

    Article  CAS  Google Scholar 

  30. Kries, H., Blomberg, R. & Hilvert, D. De novo enzymes by computational design. Curr. Opin. Chem. Biol. 17, 221–228 (2013)

    Article  CAS  Google Scholar 

  31. Lassila, J. K., Privett, H. K., Allen, B. D. & Mayo, S. L. Combinatorial methods for small-molecule placement in computational enzyme design. Proc. Natl Acad. Sci. USA 103, 16710–16715 (2006)

    Article  ADS  CAS  Google Scholar 

  32. Leung, D. W., Chen, E. & Goeddel, D. V. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1, 11–15 (1989)

    Google Scholar 

  33. Stemmer, W. P. C. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl Acad. Sci. USA 91, 10747–10751 (1994)

    Article  ADS  CAS  Google Scholar 

  34. Reetz, M. T., Kahakeaw, D. & Lohmer, R. Addressing the numbers problem in directed evolution. ChemBioChem 9, 1797–1804 (2008)

    Article  CAS  Google Scholar 

  35. Reetz, M. T. & Carballeira, J. D. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nature Protocols 2, 891–903 (2007)

    Article  CAS  Google Scholar 

  36. Kibbe, W. A. OligoCalc: An online oligonucleotide properties calculator. Nucleic Acids Res. 35, W43–W46 (2007)

    Article  Google Scholar 

  37. Kille, S. et al. Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis. ACS Synth. Biol. 2, 83–92 (2013)

    Article  CAS  Google Scholar 

  38. Gamper, M., Hilvert, D. & Kast, P. Probing the role of the C-terminus of Bacillus subtilis chorismate mutase by a novel random protein-termination strategy. Biochemistry 39, 14087–14094 (2000)

    Article  CAS  Google Scholar 

  39. Iranpoor, N., Firouzabadi, H. & Nowrouzi, N. A novel method for the highly efficient synthesis of 1,2-benzisoxazoles under neutral conditions using the Ph3P/DDQ system. Tetrahedr. Lett. 47, 8247–8250 (2006)

    Article  CAS  Google Scholar 

  40. Kikuchi, K., Hannak, R. B., Guo, M. J., Kirby, A. J. & Hilvert, D. Toward bifunctional antibody catalysis. Bioorg. Med. Chem. 14, 6189–6196 (2006)

    Article  CAS  Google Scholar 

  41. Cheng, Y.-C. & Prusoff, W. H. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108 (1973)

    Article  CAS  Google Scholar 

  42. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010)

    Article  CAS  Google Scholar 

  43. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  44. Adams, P. D. et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    Article  CAS  Google Scholar 

  45. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  46. Chovancova, E. et al. CAVER 3.0: A tool for the analysis of transport pathways in dynamic protein structures. PLOS Comput. Biol. 8, e1002708 (2012)

    Article  CAS  Google Scholar 

  47. Morozov, A. V., Kortemme, T., Tsemekhman, K. & Baker, D. Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations. Proc. Natl Acad. Sci. USA 101, 6946–6951 (2004)

    Article  ADS  CAS  Google Scholar 

Download references


The authors are grateful to A. Aires-Trapote and C. Mayer for experimental assistance. We also thank C. Stutz and B. Blattmann for help in protein crystallization, and the beamline staff at the Swiss Light Source for support during data collection. This work was supported by the Swiss National Science Foundation (SNSF), the National Center of Excellence in Research (NCCR) Structural Biology program of the SNSF, the ETH Zurich, and the Defense Advanced Research Projects Agency (DARPA). Fellowships from the Fonds des Verbandes der chemischen Industrie (to R.B.), the Stipendienfonds der Schweizer Chemischen Industrie (to H.K.), the Studienstiftung des deutschen Volkes (to R.B. and H.K.), and the National Security Science and Engineering Faculty Fellowship (to S.L.M.) are gratefully acknowledged.

Author information

Authors and Affiliations



D.H., M.G.G., S.L.M., H.K.P., P.R.E.M., D.M.P., H.K. and R.B. designed the experiments. R.B. and H.K. evolved and biochemically characterized the variants; D.M.P. and P.R.E.M. crystallized the proteins and solved their structures. The manuscript and figures were prepared by R.B., H.K., D.M.P. and D.H.

Corresponding author

Correspondence to Donald Hilvert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-4 and Supplementary Figures 1-4. (PDF 1427 kb)

Supplementary Data

This file contains source data for Supplementary Figure 3. (XLSX 44 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blomberg, R., Kries, H., Pinkas, D. et al. Precision is essential for efficient catalysis in an evolved Kemp eliminase. Nature 503, 418–421 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing