Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sound and heat revolutions in phononics

Subjects

Abstract

The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2: Phononic crystals.
Figure 3: Acoustic diodes.
Figure 4: Acoustic cloaking.
Figure 5: Enhancing sound–light interaction.
Figure 6: Thermal diodes.
Figure 7: Thermal metamaterials.
Figure 8: Thermocrystals.

References

  1. 1

    Kushwaha, M. S., Halevi, P., Dobrzynski, L. & Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993)

    ADS  CAS  PubMed  Google Scholar 

  2. 2

    Sigalas, M. M. & Economou, E. N. Band structure of elastic waves in two dimensional systems. Solid State Commun. 86, 141–143 (1993)

    ADS  CAS  Google Scholar 

  3. 3

    Martínez-Sala, R. et al. Sound attenuation by sculpture. Nature 378, 241 (1995)

    ADS  Google Scholar 

  4. 4

    Sanchez-Perez, J. V. et al. Sound attenuation by a two-dimensional array of rigid cylinders. Phys. Rev. Lett. 80, 5325–5328 (1998)

    ADS  CAS  Google Scholar 

  5. 5

    Montero de Espinosa, F. R., Jimenez, E. & Torres, M. Ultrasonic band gap in a periodic two-dimensional composite. Phys. Rev. Lett. 80, 1208–1211 (1998)

    ADS  CAS  Google Scholar 

  6. 6

    Liu, Z. Y. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000)

    ADS  CAS  PubMed  Google Scholar 

  7. 7

    Vasseur, J. O. et al. Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. Phys. Rev. Lett. 86, 3012–3015 (2001)

    ADS  CAS  PubMed  Google Scholar 

  8. 8

    Gorishnyy, T., Ullal, C. K., Maldovan, M., Fytas, G. & Thomas, E. L. Hypersonic phononic crystals. Phys. Rev. Lett. 94, 115501 (2005)This paper describes the experimental realization of small-scale phononic crystals that control high-frequency hypersonic phonons.

    ADS  CAS  PubMed  Google Scholar 

  9. 9

    Cheng, W., Wang, J., Jonas, U., Fytas, G. & Stefanou, N. Observation and tuning of hypersonic bandgaps in colloidal crystals. Nature Mater. 5, 830–836 (2006)

    ADS  CAS  Google Scholar 

  10. 10

    Thomas, E. L., Gorishnyy, T. & Maldovan, M. Phononics: colloidal crystals go hypersonic. Nature Mater. 5, 773–774 (2006)

    ADS  CAS  Google Scholar 

  11. 11

    Yu, J.-K., Mitrovic, S., Tham, D., Varghese, J. & Heath, J. R. Reduction of thermal conductivity in phononic nanomesh structure. Nature Nanotechnol. 5, 718–721 (2010)

    ADS  CAS  Google Scholar 

  12. 12

    Maldovan, M. & Thomas, E. L. Simultaneous localization of phonons and photons in two-dimensional periodic structures. Appl. Phys. Lett. 88, 251907 (2006)

    ADS  Google Scholar 

  13. 13

    Liang, B., Yuan, B. & Cheng, J. C. Acoustic diode: rectification of acoustic energy flux in one-dimensional systems. Phys. Rev. Lett. 103, 104301 (2009)

    ADS  PubMed  Google Scholar 

  14. 14

    Liang, B., Guo, X. S., Tu, J., Zhang, D. & Chen, J. C. An acoustic rectifier. Nature Mater. 9, 989–992 (2010)

    ADS  CAS  Google Scholar 

  15. 15

    Li, B. Acoustics: now you hear me, now you don’t. Nature Mater. 9, 962–963 (2010)

    ADS  CAS  Google Scholar 

  16. 16

    Li, X.-F. et al. Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Phys. Rev. Lett. 106, 084301 (2011)This paper describes the experimetal realization of an acoustic diode by breaking spatial inversion symmetry in phononic crystals.

    ADS  PubMed  Google Scholar 

  17. 17

    Boechler, N., Theocharis, G. & Daraio, C. Bifurcation-based acoustic switching and rectification. Nature Mater. 10, 665–668 (2011)

    ADS  CAS  Google Scholar 

  18. 18

    Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006)

    ADS  MathSciNet  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  19. 19

    Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006)

    ADS  MathSciNet  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  20. 20

    Milton, G. W., Briane, M. & Willis, J. R. On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8, 248 (2006)

    ADS  Google Scholar 

  21. 21

    Cummer, S. A. & Schurig, D. One path to acoustic cloaking. New J. Phys. 9, 45 (2007)

    ADS  Google Scholar 

  22. 22

    Chen, H. & Chan, C. T. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91, 183518 (2007)

    ADS  Google Scholar 

  23. 23

    Cummer, S. A. et al. Scattering theory derivation of a 3D acoustic cloaking shell. Phys. Rev. Lett. 100, 024301 (2008)

    ADS  PubMed  Google Scholar 

  24. 24

    Chen, H. & Chan, C. T. Acoustic cloaking and transformation acoustics. J. Phys. D 43, 113001 (2010)

    ADS  Google Scholar 

  25. 25

    Torrent, D. & Dehesa-Sanchez, J. Acoustic cloaking in two-dimensions: a feasible approach. New J. Phys. 10, 063015 (2008)

    ADS  Google Scholar 

  26. 26

    Cheng, Y., Yang, F., Xu, J. Y. & Liu, X. J. A multilayer structured acoustic cloak with homogeneous isotropic materials. Appl. Phys. Lett. 92, 151913 (2008)

    ADS  Google Scholar 

  27. 27

    Zhang, S., Cia, X. & Fang, N. Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106, 024301 (2011)This paper describes the experimental realization of acoustic cloaking shells for ultrasound waves using purpose-designed metamaterials.

    ADS  PubMed  Google Scholar 

  28. 28

    Chan, C. T. Invisibility cloak for ultrasonic waves. Physics 4, 2 (2011)

    Google Scholar 

  29. 29

    Farhat, M., Enoch, S., Guenneau, S. & Movchan, A. B. Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Phys. Rev. Lett. 101, 134501 (2008)

    ADS  CAS  PubMed  Google Scholar 

  30. 30

    Popa, B. I., Zigoneanu, L. & Cummer, S. A. Experimental acoustic ground cloak in air. Phys. Rev. Lett. 106, 253901 (2011)

    ADS  PubMed  Google Scholar 

  31. 31

    Stenger, N., Wilhelm, M. & Wegener, M. Experiments on elastic cloaking in thin plates. Phys. Rev. Lett. 108, 014301 (2012)

    ADS  PubMed  Google Scholar 

  32. 32

    Farhat, M., Guenneau, S. & Enoch, S. Ultrabroadband elastic cloaking in thin plates. Phys. Rev. Lett. 103, 024301 (2009)

    ADS  PubMed  Google Scholar 

  33. 33

    Brun, M., Guenneau, S. & Movchan, A. B. Achieving control of in-plane elastic waves. Appl. Phys. Lett. 94, 061903 (2009)

    ADS  Google Scholar 

  34. 34

    Trigo, M., Bruchhausen, A., Fainstein, A., Jusserand, B. & Thieryy-Mieg, V. Confinement of acoustical vibrations in semiconductor planar phonon cavity. Phys. Rev. Lett. 89, 227402 (2002)

    ADS  CAS  PubMed  Google Scholar 

  35. 35

    Worlock, J. M. & Roukes, M. L. Son et lumière. Nature 421, 802–803 (2003)

    ADS  CAS  PubMed  Google Scholar 

  36. 36

    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    ADS  CAS  PubMed  Google Scholar 

  37. 37

    John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    ADS  CAS  PubMed  Google Scholar 

  38. 38

    Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997)

    ADS  CAS  Google Scholar 

  39. 39

    Maldovan, M. & Thomas, E. L. Periodic Structures and Interference Lithography: for Photonics, Phononics and Mechanics (Wiley, 2008)

    Google Scholar 

  40. 40

    Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009)This paper describes the experimental demonstration of phonon–photon coupling in planar ‘optomechanical’ crystals.

    ADS  CAS  PubMed  Google Scholar 

  41. 41

    Psarobas, I. E. et al. Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity. Phys. Rev. B 82, 174303 (2010)

    ADS  Google Scholar 

  42. 42

    Fainstein, A., Lanzillotti-Kimura, N. D., Jusserand, B. & Perrin, B. Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light. Phys. Rev. Lett. 110, 037403 (2013)

    ADS  CAS  PubMed  Google Scholar 

  43. 43

    Sadat-Saleh, S., Benchabane, S., Baida, F. I., Bernal, M. P. & Laude, V. Tailoring simultaneous photonic and phononic band gaps. J. Appl. Phys. 106, 074912 (2009)

    ADS  Google Scholar 

  44. 44

    Mohammadi, S., Eftekhar, A. A., Khelif, A. & Adibi, A. Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs. Opt. Express 18, 9164–9172 (2010)

    ADS  CAS  PubMed  Google Scholar 

  45. 45

    Pennec, Y. et al. Simultaneous existence of phononic and photonic bandgaps in periodic crystal slabs. Opt. Express 18, 14301–14310 (2010)

    ADS  CAS  PubMed  Google Scholar 

  46. 46

    Safavi-Naeini, A. H. & Painter, O. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab. Opt. Express 18, 14926–14943 (2010)

    ADS  CAS  PubMed  Google Scholar 

  47. 47

    Safavi-Naeini, A. H., Mayer Alegre, T. P., Winger, M. & Painter, O. Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity. Appl. Phys. Lett. 97, 181106 (2010)

    ADS  Google Scholar 

  48. 48

    Gavartin, E. et al. Optomechanical coupling in a two-dimensional photonic crystal defect cavity. Phys. Rev. Lett. 106, 203902 (2011)

    ADS  CAS  PubMed  Google Scholar 

  49. 49

    Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011)

    ADS  CAS  PubMed  Google Scholar 

  50. 50

    Safavi-Naeini, A. H. et al. Observation of quantum motion of a nanomechanical resonator. Phys. Rev. Lett. 108, 033602 (2012)

    ADS  PubMed  Google Scholar 

  51. 51

    Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011)

    ADS  CAS  PubMed  Google Scholar 

  52. 52

    Heinrich, G., Ludwig, M., Qian, J., Kubala, B. & Marquardt, F. Collective dynamics of optomechanical arrays. Phys. Rev. Lett. 107, 043603 (2011)

    ADS  PubMed  Google Scholar 

  53. 53

    Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010)

    ADS  PubMed  Google Scholar 

  54. 54

    Akimov, A. V. et al. Hypersonic modulation of light in three-dimensional photonic and phononic band gap materials. Phys. Rev. Lett. 101, 033902 (2008)

    ADS  CAS  PubMed  Google Scholar 

  55. 55

    Papanikolaou, N., Psarobas, I. E. & Stefanou, N. Absolute spectral gaps for infrared light and hypersound in three-dimensional metallodielectric phoxonic crystals. Appl. Phys. Lett. 96, 231917 (2010)

    ADS  Google Scholar 

  56. 56

    Russell, P. S. J., Marin, E., Diez, A., Guenneau, S. & Movchan, A. B. Sonic band gaps in PCF preforms: enhancing the interaction of sound and light. Opt. Express 11, 2555–2560 (2003)

    ADS  CAS  PubMed  Google Scholar 

  57. 57

    Laude, V. et al. Phononic bandgap guidance of acoustic modes in photonic crystal fibers. Phys. Rev. B 71, 045107 (2005)

    ADS  Google Scholar 

  58. 58

    Dainese, P. et al. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nature Phys. 2, 388–392 (2006)

    ADS  CAS  Google Scholar 

  59. 59

    Kang, M. S., Nazarkin, A., Brenn, A. & Russell, P. S. J. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators. Nature Phys. 5, 276–280 (2009)

    ADS  CAS  Google Scholar 

  60. 60

    Li, B. W., Wang, L. & Casati, G. Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004)

    ADS  PubMed  Google Scholar 

  61. 61

    Terraneo, M., Peyrard, M. & Casati, G. Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier. Phys. Rev. Lett. 88, 094302 (2002)

    ADS  CAS  PubMed  Google Scholar 

  62. 62

    Wang, L. & Li, B. Thermal logic gates: computation with phonons. Phys. Rev. Lett. 99, 177208 (2007)

    ADS  PubMed  Google Scholar 

  63. 63

    Wang, L. & Li, B. Phononics get hot. Phys. World 21, 27–29 (2008)

    Google Scholar 

  64. 64

    Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. Science 314, 1121–1124 (2006)This paper describes an experimental solid-state thermal diode formed by a non-uniform mass distribution in nanotubes.

    ADS  CAS  PubMed  Google Scholar 

  65. 65

    Yang, N., Li, N., Wang, L. & Li, B. Thermal rectification and negative differential thermal resistance in lattices with mass gradient. Phys. Rev. B 76, 020301 (2007)

    ADS  Google Scholar 

  66. 66

    Fan, C. Z., Gao, Y. & Huang, J. P. Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92, 251907 (2008)

    ADS  Google Scholar 

  67. 67

    Chen, T., Weng, C. N. & Chen, J. S. Cloak for curvilinearly anisotropic media in conduction. Appl. Phys. Lett. 93, 114103 (2008)

    ADS  Google Scholar 

  68. 68

    Guenneau, S., Amra, C. & Veynante, D. Transformation thermodynamics: cloaking and concentrating heat flux. Opt. Express 20, 8207–8218 (2012)

    ADS  PubMed  Google Scholar 

  69. 69

    Narayana, S. & Sato, Y. Heat flux manipulation by engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012)This paper describes the manipulation of heat conduction using newly developed thermal metamaterials.

    ADS  PubMed  Google Scholar 

  70. 70

    Schittny, R., Kadic, M., Guenneau, S. & Wegener, M. Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110, 195901 (2013)

    ADS  PubMed  Google Scholar 

  71. 71

    Hicks, L. D. & Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993)

    ADS  CAS  Google Scholar 

  72. 72

    Venkatasubramanian, R., Siivola, E., Colpitts, T. & O’Quinn, B. Thin-film thermoelectric devices with high-room temperature figures of merit. Nature 413, 597–602 (2001)

    ADS  CAS  PubMed  Google Scholar 

  73. 73

    Harman, T. C., Taylor, P. J., Walsh, M. P. & LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229–2232 (2002)

    ADS  CAS  PubMed  Google Scholar 

  74. 74

    Hsu, K. F. et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303, 818–821 (2004)

    ADS  CAS  PubMed  Google Scholar 

  75. 75

    Kim, W. et al. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006)

    ADS  PubMed  Google Scholar 

  76. 76

    Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008)

    ADS  CAS  PubMed  Google Scholar 

  77. 77

    Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008)

    ADS  CAS  PubMed  Google Scholar 

  78. 78

    Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008)

    ADS  CAS  PubMed  Google Scholar 

  79. 79

    Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical structures. Nature 489, 414–418 (2012)This paper describes a highly efficient thermoelectric material obtained through the scattering of a wide range of phonons with different wavelengths.

    ADS  CAS  PubMed  Google Scholar 

  80. 80

    Chiritescu, C. et al. Ultra low thermal conductivity in disordered WSe2 crystals. Science 315, 351–353 (2007)

    ADS  CAS  PubMed  Google Scholar 

  81. 81

    Maldovan, M. Narrow low-frequency spectrum and heat management by thermocrystals. Phys. Rev. Lett. 110, 025902 (2013)

    ADS  PubMed  Google Scholar 

  82. 82

    Mingo, N., Hauser, D., Kobayashi, N. P., Plissonnier, M. & Shakouri, A. Nanoparticle in alloy approach to efficient thermoelectrics: silicides in SiGe. Nano Lett. 9, 711–715 (2009)

    ADS  CAS  PubMed  Google Scholar 

  83. 83

    Garg, J., Bonini, N., Kozinsky, B. & Marzari, N. Role of disorder and anharmonicity in the thermal conductivity of silicon germanium alloys: a first principle study. Phys. Rev. Lett. 106, 045901 (2011)

    ADS  PubMed  Google Scholar 

  84. 84

    Kundu, A., Mingo, N., Broido, D. A. & Stewart, D. A. Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys. Phys. Rev. B 84, 125426 (2011)

    ADS  Google Scholar 

  85. 85

    Bilal, O. R. & Hussein, M. I. Ultrawide phononic band gap for combined in-plane and out-of-plane waves. Phys. Rev. E 84, 065701 (2011)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Maldovan.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013). https://doi.org/10.1038/nature12608

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing