Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Odour receptors and neurons for DEET and new insect repellents

A Retraction to this article was published on 22 June 2016

Abstract

There are major impediments to finding improved DEET alternatives because the receptors causing olfactory repellency are unknown, and new chemicals require exorbitant costs to determine safety for human use. Here we identify DEET-sensitive neurons in a pit-like structure in the Drosophila melanogaster antenna called the sacculus. They express a highly conserved receptor, Ir40a, and flies in which these neurons are silenced or Ir40a is knocked down lose avoidance to DEET. We used a computational structure–activity screen of >400,000 compounds that identified >100 natural compounds as candidate repellents. We tested several and found that most activate Ir40a+ neurons and are repellents for Drosophila. These compounds are also strong repellents for mosquitoes. The candidates contain chemicals that do not dissolve plastic, are affordable and smell mildly like grapes, with three considered safe in human foods. Our findings pave the way to discover new generations of repellents that will help fight deadly insect-borne diseases worldwide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DEET is detected by Ir40a+ sacculus neurons.
Figure 2: Ir40a neurons detect DEET and are required for repellency.
Figure 3: Ir40a is required for DEET avoidance.
Figure 4: Chemical informatics prediction of new repellents.
Figure 5: Predicted repellents activate Ir40a neurons and are strong repellents for Drosophila.
Figure 6: A new class of mosquito repellents with desirable safety profiles.

Similar content being viewed by others

References

  1. Krajick, K. Medical entomology–Keeping the bugs at bay. Science 313, 36–38 (2006)

    Article  CAS  Google Scholar 

  2. Corbel, V. et al. Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet. BMC Biol. 7, 47 (2009)

    Article  Google Scholar 

  3. Reeder, N. L., Ganz, P. J., Carlson, J. R. & Saunders, C. W. Isolation of a DEET-insensitive mutant of Drosophila melanogaster (Diptera: Drosophilidae). J. Econ. Entomol. 94, 1584–1588 (2001)

    Article  CAS  Google Scholar 

  4. Klun, J. A. et al. Comparative resistance of Anopheles albimanus and Aedes aegypti to N,N-diethyl-3-methylbenzamide (Deet) and 2-methylpiperidinyl-3-cyclohexen-1-carboxamide (AI3–37220) in laboratory human-volunteer repellent assays. J. Med. Entomol. 41, 418–422 (2004)

    Article  CAS  Google Scholar 

  5. Stanczyk, N. M., Brookfield, J. F., Ignell, R., Logan, J. G. & Field, L. M. Behavioral insensitivity to DEET in Aedes aegypti is a genetically determined trait residing in changes in sensillum function. Proc. Natl Acad. Sci. USA 107, 8575–8580 (2010)

    Article  ADS  CAS  Google Scholar 

  6. Gupta, R. K. & Bhattacharjee A. K in Insect Repellents: Principles, Methods, and Uses (eds M. Debboun, Frances, S.P. & Strickman, D. ) 195–228 (Taylor & Francis Group, 2007)

    Google Scholar 

  7. Ditzen, M., Pellegrino, M. & Vosshall, L. B. Insect odorant receptors are molecular targets of the insect repellent DEET. Science 319, 1838–1842 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Bohbot, J. D. & Dickens, J. C. Odorant receptor modulation: ternary paradigm for mode of action of insect repellents. Neuropharmacology 62, 2086–2095 (2012)

    Article  CAS  Google Scholar 

  9. Pellegrino, M., Steinbach, N., Stensmyr, M. C., Hansson, B. S. & Vosshall, L. B. A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor. Nature 478, 511–514 (2011)

    Article  ADS  CAS  Google Scholar 

  10. Syed, Z. & Leal, W. S. Mosquitoes smell and avoid the insect repellent DEET. Proc. Natl Acad. Sci. USA 105, 13598–13603 (2008)

    Article  ADS  CAS  Google Scholar 

  11. DeGennaro, M. et al. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 498, 487–491 (2013)

    Article  ADS  CAS  Google Scholar 

  12. Xia, Y. et al. The molecular and cellular basis of olfactory-driven behavior in Anopheles gambiae larvae. Proc. Natl Acad. Sci. USA 105, 6433–6438 (2008)

    Article  ADS  CAS  Google Scholar 

  13. Liu, C. et al. Distinct olfactory signaling mechanisms in the malaria vector mosquito Anopheles gambiae. PLoS Biol. 8, (2010)

    Article  Google Scholar 

  14. Lee, Y., Kim, S. H. & Montell, C. Avoiding DEET through insect gustatory receptors. Neuron 67, 555–561 (2010)

    Article  CAS  Google Scholar 

  15. Weiss, L. A., Dahanukar, A., Kwon, J. Y., Banerjee, D. & Carlson, J. R. The molecular and cellular basis of bitter taste in Drosophila. Neuron 69, 258–272 (2011)

    Article  CAS  Google Scholar 

  16. Masuyama, K., Zhang, Y., Rao, Y. & Wang, J. W. Mapping neural circuits with activity-dependent nuclear import of a transcription factor. J. Neurogenet. 26, 89–102 (2012)

    Article  CAS  Google Scholar 

  17. Syed, Z., Pelletier, J., Flounders, E., Chitolina, R. F. & Leal, W. S. Generic insect repellent detector from the fruit fly Drosophila melanogaster. PLoS ONE 6, e17705 (2011)

    Article  ADS  CAS  Google Scholar 

  18. Silbering, A. F. et al. Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactory subsystems. J. Neurosci. 31, 13357–13375 (2011)

    Article  CAS  Google Scholar 

  19. Ai, M. et al. Acid sensing by the Drosophila olfactory system. Nature 468, 691–695 (2010)

    Article  ADS  CAS  Google Scholar 

  20. Benton, R., Vannice, K. S., Gomez-Diaz, C. & Vosshall, L. B. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136, 149–162 (2009)

    Article  CAS  Google Scholar 

  21. Abuin, L. et al. Functional architecture of olfactory ionotropic glutamate receptors. Neuron 69, 44–60 (2011)

    Article  CAS  Google Scholar 

  22. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature Methods 6, 875–881 (2009)

    Article  CAS  Google Scholar 

  23. Pelz, D., Roeske, T., Syed, Z., de Bruyne, M. & Galizia, C. G. The molecular receptive range of an olfactory receptor in vivo (Drosophila melanogaster Or22a). J. Neurobiol. 66, 1544–1563 (2006)

    Article  CAS  Google Scholar 

  24. Sweeney, S. T., Broadie, K., Keane, J., Niemann, H. & O'Kane, C. J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–351 (1995)

    Article  CAS  Google Scholar 

  25. Katritzky, A. R. et al. Synthesis and bioassay of improved mosquito repellents predicted from chemical structure. Proc. Natl Acad. Sci. USA 105, 7359–7364 (2008)

    Article  ADS  CAS  Google Scholar 

  26. Klocke, J. A., Darlington, M. V. & Balandrin, M. F. 1,8-Cineole (Eucalyptol), a mosquito feeding and ovipositional repellent from volatileoil of Hemizonia fitchii (Asteraceae). J. Chem. Ecol. 13, 2131–2141 (1987)

    Article  CAS  Google Scholar 

  27. Kline, D. L., Bernier, U. R., Posey, K. H. & Barnard, D. R. Olfactometric evaluation of spatial repellents for Aedes aegypti. J. Med. Entomol. 40, 463–467 (2003)

    Article  CAS  Google Scholar 

  28. Carey, A. F., Wang, G., Su, C. Y., Zwiebel, L. J. & Carlson, J. R. Odorant reception in the malaria mosquito Anopheles gambiae. Nature 464, 66–71 (2010)

    Article  ADS  CAS  Google Scholar 

  29. Hallem, E. A. & Carlson, J. R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006)

    Article  CAS  Google Scholar 

  30. Haddad, R. et al. A metric for odorant comparison. Nature Methods 5, 425–429 (2008)

    Article  CAS  Google Scholar 

  31. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  32. Walker, J. D., Rodford, R. & Patlewicz, G. Quantitative structure–activity relationships for predicting percutaneous absorption rates. Environ. Toxicol. Chem. 22, 1870–1884 (2003)

    Article  CAS  Google Scholar 

  33. Tentschert, J., Bestmann, H. J., Holldobler, B. & Heinze, J. 2,3-dimethyl-5-(2-methylpropyl)pyrazine, a trail pheromone component of Eutetramorium mocquerysi Emery (1899) (Hymenoptera: Formicidae). Naturwissenschaften 87, 377–380 (2000)

    Article  ADS  CAS  Google Scholar 

  34. Mumcuoglu, K. Y., Galun, R., Bach, U., Miller, J. & Magdassi, S. Repellency of essential oils and their components to the human body louse, Pediculus humanus humanus. Entomol. Exp. Appl. 78, 309–314 (1996)

    Article  CAS  Google Scholar 

  35. Hou, X. W., Fields, P. & Taylor, W. The effect of repellents on penetration into packaging by stored-product insects. J. Stored Prod. Res. 40, 47–54 (2004)

    Article  CAS  Google Scholar 

  36. Abramson, C. I. et al. Proboscis conditioning experiments with honeybees, Apis mellifera caucasica, with butyric acid and DEET mixture as conditioned and unconditioned stimuli. J. Insect Sci. 10, 1–17 (2010)

    Article  Google Scholar 

  37. Turner, S. L. & Ray, A. Modification of CO2 avoidance behaviour in Drosophila by inhibitory odorants. Nature 461, 277–281 (2009)

    Article  ADS  CAS  Google Scholar 

  38. Turner, S. L. et al. Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes. Nature 474, 87–91 (2011)

    Article  CAS  Google Scholar 

  39. de Bruyne, M., Clyne, P. J. & Carlson, J. R. Odor coding in a model olfactory organ: the Drosophila maxillary palp. J. Neurosci. 19, 4520–4532 (1999)

    Article  CAS  Google Scholar 

  40. Boström, J., Greenwood, J. R. & Gottfries, J. Assessing the performance of OMEGA with respect to retrieving bioactive conformations. J. Mol. Graph Model. 21, 449–462 (2003)

    Article  Google Scholar 

  41. DRAGON. software for Windows for molecular descriptor calculations v.5.5 (Talete, 2007)

  42. Chang, C. & Lin, C. Libsvm: a library for support vector machines. (http://www.csie.ntu.edu.tw/cjlin/libsvm) (2001)

  43. Karatzoglou, A., Meyer, D. & Hornik, K. Support vector machines in R. J. Stat. Softw. http://www.jstatsoft.org/v15/i09 (2006)

  44. El-Sayed, A. M. The Pherobase database of insect pheromones and semiochemicals http://www.pherobase.com/ (2009)

  45. Flavors. and fragrances 2007–2008 catalogue (Sigma-Aldrich, 2007)

  46. Cork, A. & Park, K. C. Identification of electrophysiologically-active compounds for the malaria mosquito, Anopheles gambiae, in human sweat extracts. Med. Vet. Entomol. 10, 269–276 (1996)

    Article  CAS  Google Scholar 

  47. Curran, A. M., Rabin, S. I., Prada, P. A. & Furton, K. G. Comparison of the volatile organic compounds present in human odor using SPME-GC/MS. J. Chem. Ecol. 31, 1607–1619 (2005)

    Article  CAS  Google Scholar 

  48. Gallagher, M. et al. Analyses of volatile organic compounds from human skin. Br. J. Dermatol. 159, 780–791 (2008)

    Article  CAS  Google Scholar 

  49. Knudsen, J. T., Eriksson, R., Gershenzon, J. & Ståhl, B. Diversity and distribution of floral scent. Bot. Rev. 72, 1–120 (2006)

    Article  Google Scholar 

  50. Logan, J. G. et al. Identification of human-derived volatile chemicals that interfere with attraction of Aedes aegypti mosquitoes. J. Chem. Ecol. 34, 308–322 (2008)

    Article  CAS  Google Scholar 

  51. Meijerink, J. et al. Identification of olfactory stimulants for Anopheles gambiae from human sweat samples. J. Chem. Ecol. 26, 1367–1382 (2000)

    Article  CAS  Google Scholar 

  52. Zeng, X. N. et al. Analysis of characteristic odors from human male axillae. J. Chem. Ecol. 17, 1469–1492 (1991)

    Article  CAS  Google Scholar 

  53. Zeng, X. N., Leyden, J. J., Spielman, A. I. & Preti, G. Analysis of characteristic human female axillary odors: qualitative comparison to males. J. Chem. Ecol. 22, 237–257 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Ganguly and D. Carter for help with calcium imaging; Z. Wisotsky for help with gustatory experiments; D. MacWilliam for help with olfactory experiments; J. Wang for sharing the NFAT transgenic fly line; and R. Benton for sharing the Ir40a-Gal4 fly line. This work was partly funded by a Whitehall Foundation grant to A.D., an R21NS074332 (NINDS) to A.D. and A.R., and an R56AI099778 (NIAID) and R01AI087785 (NIAID) to A.R. The granting agencies had no role in experimental design or analysis.

Author information

Authors and Affiliations

Authors

Contributions

S.M.B. planned and performed the chemical informatics and solubility experiment, and helped design the behaviour experiments. P.K. planned and performed the NFAT imaging, Ca2+ imaging and Drosophila behaviour experiments. S.K.T. performed Ca2+ imaging, electrophysiology and some behaviour experiments. T.G. performed the arm-in-cage experiments. C.P. performed behaviour analysis. S.M.B., P.K. and S.K.T. helped prepare drafts of the manuscript and figures. A.D. planned experiments and helped write the manuscript. A.R. planned experiments, managed the project, and wrote the manuscript.

Corresponding author

Correspondence to Anandasankar Ray.

Ethics declarations

Competing interests

P.K., S.M.B., C.P. and A.R. are listed as inventors in pending patent applications filed by the University of California Riverside.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-11 and Supplementary Tables 1-2. (PDF 2933 kb)

DEET activates neurons in the sacculus

This video shows a confocal Z-stack of a representative antenna from LexAop-CD8-GFP-2ACD8-GFP; UAS-mLexA-VP16-NFAT, LexAop-CD2-GFP D. melanogaster exposed to10% DEET (from experiment in Figure 1b). (AVI 505 kb)

BA activates neurons in the sacculus

This video shows a confocal Z-stack of a representative antenna from LexAop-CD8-GFP-2ACD8-GFP; UAS-mLexA-VP16-NFAT, LexAop-CD2-GFP D. melanogaster exposed to 10% BA (from experiment in Figure 5a). (AVI 1436 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kain, P., Boyle, S., Tharadra, S. et al. Odour receptors and neurons for DEET and new insect repellents. Nature 502, 507–512 (2013). https://doi.org/10.1038/nature12594

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12594

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing