Abstract
The miniaturization and integration of frequency-agile microwave circuits—relevant to electronically tunable filters, antennas, resonators and phase shifters—with microelectronics offers tantalizing device possibilities, yet requires thin films whose dielectric constant at gigahertz frequencies can be tuned by applying a quasi-static electric field1. Appropriate systems such as BaxSr1−xTiO3 have a paraelectric–ferroelectric transition just below ambient temperature, providing high tunability1,2,3. Unfortunately, such films suffer significant losses arising from defects. Recognizing that progress is stymied by dielectric loss, we start with a system with exceptionally low loss—Srn+1TinO3n+1 phases4,5—in which (SrO)2 crystallographic shear6,7 planes provide an alternative to the formation of point defects for accommodating non-stoichiometry8,9. Here we report the experimental realization of a highly tunable ground state arising from the emergence of a local ferroelectric instability10 in biaxially strained Srn+1TinO3n+1 phases with n ≥ 3 at frequencies up to 125 GHz. In contrast to traditional methods of modifying ferroelectrics—doping1,2,3,11,12 or strain13,14,15,16—in this unique system an increase in the separation between the (SrO)2 planes, which can be achieved by changing n, bolsters the local ferroelectric instability. This new control parameter, n, can be exploited to achieve a figure of merit at room temperature that rivals all known tunable microwave dielectrics3.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Local-electrostatics-induced oxygen octahedral distortion in perovskite oxides and insight into the structure of Ruddlesden–Popper phases
Nature Communications Open Access 20 September 2021
-
Atomic scale symmetry and polar nanoclusters in the paraelectric phase of ferroelectric materials
Nature Communications Open Access 09 June 2021
-
Suppressing the ferroelectric switching barrier in hybrid improper ferroelectrics
npj Computational Materials Open Access 06 November 2020
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Tagantsev, A. K., Sherman, V. O., Astafiev, K. F., Venkatesh, J. & Setter, N. Ferroelectric materials for microwave tunable applications. J. Electroceram. 11, 5–66 (2003)
Kirchoefer, S. W. et al. Microwave properties of Sr0. 5Ba0. 5TiO3 thin-film interdigitated capacitors. Microw. Opt. Technol. Lett. 18, 168–171 (1998)
Gevorgian, S. S. & Kollberg, E. L. Do we really need ferroelectrics in paraelectric phase only in electrically controlled microwave devices? IEEE Trans. Microw. Theory Tech. 49, 2117–2124 (2001)
Nakamura, T. et al. On the perovskite-related materials of high dielectric permittivity with small temperature dependence and low dielectric loss. Ferroelectrics 196, 205–209 (1997)
Wise, P. L. et al. Structure–microwave property relations in (SrxCa(1−x))n +1TinO3n+1 . J. Eur. Ceram. Soc. 21, 1723–1726 (2001)
Andersson, S. & Wadsley, A. D. Crystallographic shear and diffusion paths in certain higher oxides of niobium, tungsten, molybdenum and titanium. Nature 211, 581–583 (1966)
Anderson, J. S. et al. Point defects and extended defects in niobium oxides. Nature 243, 81–83 (1973)
Tilley, R. J. D. Correlation between dielectric constant and defect structure of non-stoichiometric solids. Nature 269, 229–231 (1977)
Tilley, R. J. D. An electron microscope study of perovskite-related oxides in the Sr-Ti-O system. J. Solid State Chem. 21, 293–301 (1977)
Birol, T., Benedek, N. A. & Fennie, C. J. Interface control of emergent ferroic order in Ruddlesden–Popper Srn +1TinO3n+1 . Phys. Rev. Lett. 107, 257602 (2011)
Bao, P., Jackson, T. J., Wang, X. & Lancaster, M. J. Barium strontium titanate thin film varactors for room-temperature microwave device applications. J. Phys. D Appl. Phys. 41, 063001 (2008)
Weiss, C. V. et al. Compositionally graded ferroelectric multilayers for frequency agile tunable devices. J. Mater. Sci. 44, 5364–5374 (2009)
Pertsev, N. A., Tagantsev, A. K. & Setter, N. Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films. Phys. Rev. B 61, R825–R829 (2000)
Antons, A., Neaton, J. B., Rabe, K. M. & Vanderbilt, D. Tunability of the dielectric response of epitaxially strained SrTiO3 from first principles. Phys. Rev. B 71, 024102 (2005)
Li, Y. L. et al. Phase transitions and domain structures in strained pseudocubic (100) SrTiO3 thin films. Phys. Rev. B 73, 184112 (2006)
Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004)
Cole, M. W., Nothwang, W. D., Hubbard, C., Ngo, E. & Ervin, M. Low dielectric loss and enhanced tunability of Ba0. 6Sr0. 4TiO3 based thin films via material compositional design and optimized film processing methods. J. Appl. Phys. 93, 9218–9225 (2003)
Cole, M. W., Joshi, P. C. & Ervin, M. H. La doped Ba1−xSrxTiO3 thin films for tunable device applications. J. Appl. Phys. 89, 6336–6340 (2001)
Babbitt, R. W., Koscica, T. E. & Drach, W. C. Planar microwave electrooptic phase shifters. Microwave J. 35, 63–79 (1992)
Gevorgian, S., Carlsson, E., Wikborg, E. & Kollberg, E. Tunable microwave devices based on bulk and thin film ferroelectrics. Integr. Ferroelectr. 22, 765–777 (1998)
Booth, J. C., Takeuchi, I. & Chang, K. S. Microwave-frequency loss and dispersion in ferroelectric Ba0. 3Sr0. 7TiO3 thin films. Appl. Phys. Lett. 87, 082908 (2005)
Ruddlesden, S. N. & Popper, P. New compounds of the K2NiF4 type. Acta Crystallogr. 10, 538–540 (1957)
Ruddlesden, S. N. & Popper, P. The compound Sr3Ti2O7 and its structure. Acta Crystallogr. 11, 54–55 (1958)
Lee, J. & Arias, T. A. Structural phase transitions in Ruddlesden–Popper phases of strontium titanate: ab initio and modulated Ginzburg–Landau approaches. Phys. Rev. B 82, 180104 (2010)
Xi, X. X. et al. Oxide thin films for tunable microwave devices. J. Electroceram. 4, 393–405 (2000)
Lee, C.-H. et al. Effect of reduced dimensionality on the optical band gap of SrTiO3 . Appl. Phys. Lett. 102, 122901 (2013)
Udayakumar, K. R. & Cormack, A. N. Structural aspects of phase-equilibria in the strontium–titanium–oxygen system. J. Am. Ceram. Soc. 71, C469–C471 (1988)
Udayakumar, K. R. & Cormack, A. N. Non-stoichiometry in alkaline-earth excess alkaline-earth titanates. J. Phys. Chem. Solids 50, 55–60 (1989)
Veličkov, B., Kahlenberg, V., Bertram, R. & Bernhagen, M. Crystal chemistry of GdScO3, DyScO3, SmScO3 and NdScO3 . Z. Kristallogr. 222, 466–473 (2007)
Houzet, G., Burgnies, L., Velu, G., Carru, J.-C. & Lippens, D. Dispersion and loss of ferroelectric Ba0. 5Sr0. 5TiO3 thin films up to 110 GHz. Appl. Phys. Lett. 93, 053507 (2008)
Neaton, J. B. & Rabe, K. M. Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices. Appl. Phys. Lett. 82, 1586–1588 (2003)
Uecker, R. et al. Properties of rare-earth scandate single crystals (Re = Nd−Dy). J. Cryst. Growth 310, 2649–2658 (2008)
Folkman, C. M., Das, R. R., Eom, C. B., Chen, Y. B. & Pan, X. Q. Single domain strain relaxed PrScO3 template on miscut substrates. Appl. Phys. Lett. 89, 221904 (2006)
Kunc, K. & Martin, R. M. Ab initio determination of static, dynamic and dielectric properties of semiconductors. Physica B 117/118, 511–516 (1983)
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)
Perez-Mato, J. M., Orobengoa, D. & Aroyo, M. I. Mode crystallography of distorted structures. Acta Crystallogr. A 66, 558–590 (2010)
Ghosez, P., Gonze, X. & Michenaud, J. P. Ab initio phonon dispersion curves and interatomic force constants of barium titanate. Ferroelectrics 206, 205–217 (1998)
Giannozzi, P. et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009)
Theis, C. D. & Schlom, D. G. Cheap and stable titanium source for use in oxide molecular beam epitaxy systems. J. Vac. Sci. Technol. A 14, 2677–2679 (1996)
Haeni, J. H., Theis, C. D. & Schlom, D. G. RHEED intensity oscillations for the stoichiometric growth of SrTiO3 thin films by reactive molecular beam epitaxy. J. Electroceram. 4, 385–391 (2000)
Kadlec, C. et al. High tunability of the soft mode in strained SrTiO3/DyScO3 multilayers. J. Phys. Condens. Matter 21, 115902 (2009)
Noujni, D. et al. Temperature dependence of microwave and THz dielectric response in Srn +1TinO3n+1 (n = 1–4). Integr. Ferroelectr. 62, 199–203 (2004)
Kamba, S. et al. Composition dependence of the lattice vibrations in Srn +1TinO3n+1 Ruddlesden–Popper homologous series. J. Eur. Ceram. Soc. 23, 2639–2645 (2003)
Marks, R. B. A multiline method of network analyzer calibration. IEEE Trans. Microw. Theory Tech. 39, 1205–1215 (1991)
Williams, D. F., Wang, J. C. M. & Arz, U. An optimal vector-network-analyzer calibration algorithm. IEEE Trans. Microw. Theory Tech. 51, 2391–2401 (2003)
Orloff, N. D. et al. A compact variable-temperature broadband series-resistor calibration. IEEE Trans. Microw. Theory Tech. 59, 188–195 (2011)
Orloff, N., Mateu, J., Murakami, M., Takeuchi, I. & Booth, J. C. in Proc. IEEE MTT-S Int. Microwave Symp. 1177–1180 (IEEE Publishing, 2007)
Lu, Z. G. & Calvarin, G. Frequency dependence of the complex dielectric permittivity of ferroelectric relaxor. Phys. Rev. B 51, 2694–2702 (1995)
Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012)
Xu, G., Shirane, G., Copley, J. R. D. & Gehring, P. M. Neutron elastic diffuse scattering study of Pb(Mg1/3Nb2/3)O3 . Phys. Rev. B 69, 064112 (2004)
Acknowledgements
We acknowledge discussions with S. Trolier-McKinstry and C. A. Randall. Research was supported by Army Research Office (ARO) grants W911NF-09-1-0415 (for C.-H.L., Y.Z., J.A.M. and D.A.M.), W911NF-12-1-0437 (for Y.N., J.Z. and D.G.S.) and W911NF-10-1-0345 (for T.B., N.A.B. and C.J.F.); by the National Science Foundation (NSF) through Materials Research Science and Engineering Centers (MRSEC) grants DMR-0820404 (for R.H., E.V., X.X.X. and V.G.) and DMR-1120296 (for Y.K., J.D.B. and L.F.K.); by the Czech Science Foundation Project no. P204/12/1163 and the Czech Ministry of Education, Youth and Sports project LD12026 (for V.G., D.N. and S.K.); and by the Spanish Government and the European Union through grants EUI-ENIAC-2011-4349 and EUI-ENIAC 2010-04252 (for E.R.). C.-H.L. acknowledges stipend support from NSF grant DMR-0820404. J.A.M. acknowledges financial support from a National Defense Science & Engineering Graduate Fellowship. The dielectric and ferroelectric measurements in Fig. 3c were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. This work was performed in part at the Cornell NanoScale Factory, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (grant ECCS-0335765). This work made use of the electron microscopy facility of the Cornell Center for Materials Research (CCMR) with support from the NSF MRSEC programme (DMR 1120296) and NSF IMR-0417392.
Author information
Authors and Affiliations
Contributions
The thin films were synthesized by C.-H.L. on single-crystal substrates grown by M.B. and R.U. The first-principles calculations were performed by T.B., N.A.B. and C.J.F. The films were characterized by microwave measurements by N.D.O., E.R., I.T. and J.C.B.; by SHG by R.H., E.V. and V.G.; by infrared reflectance and terahertz transmission by V.G., D.N. and S.K.; by STEM by Y.Z., J.A.M., L.F.K. and D.A.M.; by XRD by C.-H.L., Y.N., J.-S.Z., Y.K. and J.D.B.; and by capacitance by M.D.B. and S.K. X.X.X. helped analyse the data. C.-H.L., T.B., J.C.B., C.J.F. and D.G.S. wrote the manuscript. The study was conceived and guided by C.J.F. and D.G.S. All authors discussed results and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Extended data figures and tables
Extended Data Figure 1 First-principles calculations showing the emergence of a ferroelectric instability in Srn+1TinO3n+1 phases.
a, In-plane polar soft-mode (lowest-frequency transverse optical phonon) square of frequency against index n. Strain values are given with respect to the lattice constant of SrTiO3. The dashed lines are fits to exponentials. b, Zero-frequency isosurface of the soft-mode phonon of SrTiO3 in the first Brillouin zone. From left to right: cubic SrTiO3 under no strain, 0.5%, 1.1% and 1.6% tensile biaxial strain. The last two correspond to (110) DyScO3 and (110) GdScO3 substrates, respectively; the small anisotropy of the substrate surfaces are taken into account in the calculations. The high-symmetry points are provided for the simple tetragonal cell. c, (001)* cuts through the surfaces in b at the qz = 0 plane.
Extended Data Figure 2 θ–2θ XRD scans of the epitaxial Srn+1TinO3n+1 (n = 1–6) films grown on (110) GdScO3.
Substrates peaks are labelled with an asterisk, and the plots are offset for clarity.
Extended Data Figure 3 Superimposed XRD rocking curves of selected film peaks of the Srn+1TinO3n+1 films and the underlying 220 DyScO3 substrate peaks.
a, n = 6 (0026 peak, blue). b, n = 5 (0022 peak, red). c, n = 4 (0020 peak, orange). d, n = 3 (0014 peak, green). e, n = 2 (0010 peak, light blue). f, n = 1 (006 peak, grey). The full-width at half-maximum (FWHM) of the substrate and film peaks are given.
Extended Data Figure 4 Superimposed XRD rocking curves of selected film peaks of the Srn+1TinO3n+1 films and the underlying 220 GdScO3 substrate peaks.
a, n = 6 (0026 peak, blue). b, n = 5 (0022 peak, red). c, n = 4 (0018 peak, orange). d, n = 3 (0016 peak, green). e, n = 2 (008 peak, light blue). f, n = 1 (006 peak, grey). The FWHM of the substrate and film peaks are given.
Extended Data Figure 5 Nonlinear optical SHG temperature scans of Srn+1TinO3n+1 (n = 2–6 and n = ∞) films.
a, Films grown on (110) DyScO3. b, Films grown on (110) GdScO3 substrates. The SHG signal for each temperature scan was normalized with the laser input power, where the SHG signal axis for each scan shows normalized tick labels at 0 and 2 to compare the signal strength between samples. c, d, The paraelectric-to-ferroelectric transition temperatures (TC) measured by SHG were determined as the point where the SHG signal vanishes to zero and are shown for DyScO3 (c) and GdScO3 (d). The error bars are ±10 K, about the height of each square symbol in c and d.
Extended Data Figure 6 Real and imaginary parts of the in-plane complex dielectric constant (K11) of the Sr7Ti6O19/DyScO3 sample at terahertz frequencies.
a, Infrared reflectance spectra of the Sr7Ti6O19/DyScO3 sample (E || []). b, Real and imaginary parts of the measured complex terahertz dielectric spectra (hollow symbols) overlapped with fittings (lines) to the infrared and terahertz spectra.
Extended Data Figure 7 Analysis of the contributions to K11 from phonons and the central mode.
a, Temperature dependence of the real part of the static dielectric constant (K11) of the n = 6/DyScO3 sample. Grey hollow dots show the contribution of solely the low-frequency phonons (soft mode) to K11 calculated from infrared spectra. The blue curve shows contributions from both low-frequency phonons and polar nanoregions (central mode) calculated from infrared and terahertz spectra. b, Temperature dependence of the polar phonons and the central-mode frequencies.
Extended Data Figure 8 Geometry of the coplanar waveguide and interdigitated capacitor device structures measured.
a, Diagram of the test and substrate device layout for the Srn+1TinO3n+1 thin films and DyScO3 and GdScO3 substrates with coplanar waveguides (CPWs) and interdigitated capacitor (IDC) devices. The substrate is shown in light grey, and the 760-nm-thick Ti/Au electrodes in blue. b, Top views and cross-sections of the CPW and IDC device geometry. The cross-section thicknesses are not to scale.
Extended Data Figure 9 Frequency dependence of the real part of the complex dielectric constant of the n = 6/DyScO3 sample at microwave frequencies for various temperatures, T.
a, T > TC. b, T < TC. Solid lines denote fits based on a model that includes effects due to a distribution of relaxation times in the system. Although only the real part of the complex dielectric constant is shown, both real and imaginary parts are included in the fits.
Extended Data Figure 10 Temperature dependence of fit parameters for the results shown in Extended Data Fig. 9.
a, Static and high-frequency dielectric constants. b, The width of the distribution of relaxation times. The value for the relaxation time of the smallest polar clusters is fixed at τ = 10−13 s.
Rights and permissions
About this article
Cite this article
Lee, CH., Orloff, N., Birol, T. et al. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature 502, 532–536 (2013). https://doi.org/10.1038/nature12582
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature12582
This article is cited by
-
Mixed dimensionality weaves exotic behaviour into superlattices
Nature (2022)
-
Structure, chemical bond, and microwave dielectric properties of (Sr1−xCax)2(Ti1−xSnx)O4 ceramics
Journal of Materials Science: Materials in Electronics (2022)
-
Simultaneously with lower permittivity and higher tunability achieved in Ba0.5Sr0.5TiO3-Mg2SiO4-MgO composite ceramics prepared by spark plasma sintering
Journal of Materials Science: Materials in Electronics (2022)
-
Atomic scale symmetry and polar nanoclusters in the paraelectric phase of ferroelectric materials
Nature Communications (2021)
-
Local-electrostatics-induced oxygen octahedral distortion in perovskite oxides and insight into the structure of Ruddlesden–Popper phases
Nature Communications (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.