Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Unsynchronised subunit motion in single trimeric sodium-coupled aspartate transporters

Abstract

Excitatory amino acid transporters (EAATs) are secondary transport proteins that mediate the uptake of glutamate and other amino acids1. EAATs fulfil an important role in neuronal signal transmission by clearing the excitatory neurotransmitters from the synaptic cleft after depolarization of the postsynaptic neuron. An intensively studied model system for understanding the transport mechanism of EAATs is the archaeal aspartate transporter GltPh2,3,4,5,6. Each subunit in the homotrimeric GltPh supports the coupled translocation of one aspartate molecule and three Na+ ions2 as well as an uncoupled flux of Cl ions7. Recent crystal structures of GltPh3,5,6,8 revealed three possible conformations for the subunits, but it is unclear whether the motions of individual subunits are coordinated to support transport. Here, we report the direct observation of conformational dynamics in individual GltPh trimers embedded in the membrane by applying single-molecule fluorescence resonance energy transfer (FRET). By analysing the transporters in a lipid bilayer instead of commonly used detergent micelles, we achieve conditions that approximate the physiologically relevant ones. From the kinetics of FRET level transitions we conclude that the three GltPh subunits undergo conformational changes stochastically and independently of each other.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup.
Figure 2: Single-molecule FRET dynamics.
Figure 3: Independent subunit dynamics within GltPh trimmers.
Figure 4: Branching ratios and dwell times for various GltPh conformations.

Similar content being viewed by others

References

  1. Kanner, B. I. & Zomot, E. Sodium-coupled neurotransmitter transporters. Chem. Rev. 108, 1654–1668 (2008)

    Article  CAS  Google Scholar 

  2. Groeneveld, M. & Slotboom, D. J. Na+:aspartate coupling stoichiometry in the glutamate transporter homologue GltPh . Biochemistry 49, 3511–3513 (2010)

    Article  CAS  Google Scholar 

  3. Reyes, N., Ginter, C. & Boudker, O. Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462, 880–885 (2009)

    Article  CAS  ADS  Google Scholar 

  4. Ryan, R. M., Compton, E. L. & Mindell, J. A. Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii. J. Biol. Chem. 284, 17540–17548 (2009)

    Article  CAS  Google Scholar 

  5. Yernool, D. et al. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431, 811–818 (2004)

    Article  CAS  ADS  Google Scholar 

  6. Boudker, O. et al. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445, 387–393 (2007)

    Article  CAS  ADS  Google Scholar 

  7. Ryan, R. M. & Mindell, J. A. The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nature Struct. Mol. Biol. 14, 365–371 (2007)

    Article  CAS  Google Scholar 

  8. Verdon, G. & Boudker, O. Crystal structure of an asymmetric trimer of a bacterial glutamate transporter homolog. Nature Struct. Mol. Biol. 19, 355–357 (2012)

    Article  CAS  Google Scholar 

  9. Georgieva, E. R. et al. Conformational ensemble of the sodium-coupled aspartate transporter. Nature Struct. Mol. Biol. 20, 215–221 (2013)

    Article  CAS  Google Scholar 

  10. Hänelt, I. et al. Conformational heterogeneity of the aspartate transporter GltPh . Nature Struct. Mol. Biol. 20, 210–214 (2013)

    Article  Google Scholar 

  11. Joo, C. et al. Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem. 77, 51–76 (2008)

    Article  CAS  Google Scholar 

  12. Verhalen, B. et al. Dynamic ligand-induced conformational rearrangements in P-glycoprotein as probed by fluorescence resonance energy transfer spectroscopy. J. Biol. Chem. 287, 1112–1127 (2012)

    Article  CAS  Google Scholar 

  13. Zhao, Y. et al. Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue. Nature 474, 109–113 (2011)

    Article  CAS  Google Scholar 

  14. Zhao, Y. et al. Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature 465, 188–193 (2010)

    Article  CAS  ADS  Google Scholar 

  15. Akyuz, N. et al. Transport dynamics in a glutamate transporter homologue. Nature http://dx.doi.org/10.1038/nature12265 (23 June 2013)

  16. Dorwart, M. R. et al. S. aureus MscL is a pentamer in vivo but of variable stoichiometries in vitro: implications for detergent-solubilized membrane proteins. PLoS Biol. 8, e1000555 (2010)

    Article  Google Scholar 

  17. Floyd, D. L., Harrison, S. C. & van Oijen, A. M. Analysis of kinetic intermediates in single-particle dwell-time distributions. Biophys. J. 99, 360–366 (2010)

    Article  CAS  ADS  Google Scholar 

  18. Koch, H. P. & Larsson, H. P. Small-scale molecular motions accomplish glutamate uptake in human glutamate transporters. J. Neurosci. 25, 1730–1736 (2005)

    Article  CAS  Google Scholar 

  19. Grewer, C. et al. Individual subunits of the glutamate transporter EAAC1 homotrimer function independently of each other. Biochemistry 44, 11913–11923 (2005)

    Article  CAS  Google Scholar 

  20. Koch, H. P., Brown, R. L. & Larsson, H. P. The glutamate-activated anion conductance in excitatory amino acid transporters is gated independently by the individual subunits. J. Neurosci. 27, 2943–2947 (2007)

    Article  CAS  Google Scholar 

  21. Blanchard, S. C. et al. tRNA dynamics on the ribosome during translation. Proc. Natl Acad. Sci. USA 101, 12893–12898 (2004)

    Article  CAS  ADS  Google Scholar 

  22. van der Heide, T. & Poolman, B. Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane. Proc. Natl Acad. Sci. USA 97, 7102–7106 (2000)

    Article  CAS  ADS  Google Scholar 

  23. Tanner, N. A. & van Oijen, A. M. Visualizing DNA replication at the single-molecule level. Methods Enzymol. 475, 259–278 (2010)

    Article  CAS  Google Scholar 

  24. Cordes, T., Vogelsang, J. & Tinnefeld, P. On the mechanism of Trolox as antiblinking and antibleaching reagent. J. Am. Chem. Soc. 131, 5018–5019 (2009)

    Article  CAS  Google Scholar 

  25. Kapanidis, A. N. et al. Alternating-laser excitation of single molecules. Acc. Chem. Res. 38, 523–533 (2005)

    Article  CAS  Google Scholar 

  26. Guizar-Sicairos, M., Thurman, S. T. & Fienup, J. R. Efficient subpixel image registration algorithms. Opt. Lett. 33, 156–158 (2008)

    Article  ADS  Google Scholar 

  27. Reddy, B. S. & Chatterji, B. N. An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5, 1266–1271 (1996)

    Article  CAS  ADS  Google Scholar 

  28. Hedde, P. N. et al. Online image analysis software for photoactivation localization microscopy. Nature Methods 6, 689–690 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Punter for developing software and algorithms for data analysis, V. Krasnikov for his help with the design, construction and maintenance of the single-molecule fluorescence microscopes and I. Küsters for sharing experience on liposome tethering and single-molecule imaging of membrane proteins. A.M.v.O. acknowledges funding from the Netherlands Organization for Scientific Research (NWO; Vici 680-47-607) and the European Research Council (ERC Starting 281098). D.J.S. acknowledges funding from the Netherlands Organization for Scientific Research (NWO; Vidi 700.54.423, Vici 865.11.001) and the European Research Council (ERC Starting 282083). I.H. acknowledges the Deutsche Forschungsgemeinschaft (HA 6322/1-1) for providing funding.

Author information

Authors and Affiliations

Authors

Contributions

G.B.E., I.H., J.M.H.G., D.J.S. and A.M.v.O. designed experiments, G.B.E. and I.H. performed experiments, J.M.H.G. performed the FRET level transition calculations, G.B.E., D.J.S. and A.M.v.O. wrote the manuscript, all authors contributed to the interpretation of the data.

Corresponding authors

Correspondence to Dirk Jan Slotboom or Antoine M. van Oijen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, which include Supplementary Methods, Supplementary Table, 1, Supplementary Figures 1-3 and a Supplementary Reference. (PDF 680 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erkens, G., Hänelt, I., Goudsmits, J. et al. Unsynchronised subunit motion in single trimeric sodium-coupled aspartate transporters. Nature 502, 119–123 (2013). https://doi.org/10.1038/nature12538

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12538

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing