Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Attractive photons in a quantum nonlinear medium

Abstract

The fundamental properties of light derive from its constituent particles—massless quanta (photons) that do not interact with one another1. However, it has long been known that the realization of coherent interactions between individual photons, akin to those associated with conventional massive particles, could enable a wide variety of novel scientific and engineering applications2,3. Here we demonstrate a quantum nonlinear medium inside which individual photons travel as massive particles with strong mutual attraction, such that the propagation of photon pairs is dominated by a two-photon bound state4,5,6,7. We achieve this through dispersive coupling of light to strongly interacting atoms in highly excited Rydberg states. We measure the dynamical evolution of the two-photon wavefunction using time-resolved quantum state tomography, and demonstrate a conditional phase shift8 exceeding one radian, resulting in polarization-entangled photon pairs. Particular applications of this technique include all-optical switching, deterministic photonic quantum logic and the generation of strongly correlated states of light9.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Photons with strong mutual attraction in a quantum nonlinear medium.
Figure 2: Propagation of interacting photon pairs.
Figure 3: Dependence of the photon–photon interaction on detuning.
Figure 4: Quantum coherence and entanglement.

References

  1. 1

    Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge Univ. Press, 1997)

    Book  Google Scholar 

  2. 2

    Milburn, G. J. Quantum optical Fredkin gate. Phys. Rev. Lett. 62, 2124–2127 (1989)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Imamoğlu, A. Schmidt, H. Woods, G. & Deutsch, M. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997)

    ADS  Article  Google Scholar 

  4. 4

    Deutsch, I. H., Chiao, R. Y. & Garrison, J. C. Diphotons in a nonlinear Fabry-Pérot resonator: bound states of interacting photons in an optical “quantum wire”. Phys. Rev. Lett. 69, 3627–3630 (1992)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Shen, J.-T. & Fan, S. Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. Phys. Rev. Lett. 98, 153003 (2007)

    ADS  Article  Google Scholar 

  6. 6

    Chang, D. E., Srensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Cheng, Z. & Kurizki, G. Optical “multiexcitons”: quantum gap solitons in nonlinear Bragg reflectors. Phys. Rev. Lett. 75, 3430–3433 (1995)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Turchette, Q. A., Hood, C., Lange, W., Mabuchi, H. & Kimble, H. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  9. 9

    Chang, D. E. et al. Crystallization of strongly interacting photons in a nonlinear optical fibre. Nature Phys. 4, 884–889 (2008)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Rauschenbeutel, A. et al. Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166–5169 (1999)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Kirchmair, G. et al. Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature 495, 205–209 (2013)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Gorshkov, A. V., Otterbach, J., Fleischhauer, M., Pohl, T. & Lukin, M. D. Photon-photon interactions via Rydberg blockade. Phys. Rev. Lett. 107, 133602 (2011)

    ADS  Article  Google Scholar 

  15. 15

    Pritchard, J. D. et al. Cooperative atom-light interaction in a blockaded Rydberg ensemble. Phys. Rev. Lett. 105, 193603 (2010)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Maxwell, D. et al. Storage and control of optical photons using Rydberg polaritons. Phys. Rev. Lett. 110, 103001 (2013)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Dudin, Y. O. & Kuzmich, A. Strongly interacting Rydberg excitations of a cold atomic gas. Science 336, 887–889 (2012)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Petrosyan, D., Otterbach, J. & Fleischhauer, M. Electromagnetically induced transparency with Rydberg atoms. Phys. Rev. Lett. 107, 213601 (2011)

    ADS  Article  Google Scholar 

  19. 19

    Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Parigi, V. et al. Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold Rydberg atoms. Phys. Rev. Lett. 109, 233602 (2012)

    ADS  Article  Google Scholar 

  21. 21

    Kasapi, A., Jain, M., Yin, G. Y. & Harris, S. E. Electromagnetically induced transparency: propagation dynamics. Phys. Rev. Lett. 74, 2447–2450 (1995)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Venkataraman, V., Saha, K. & Gaeta, A. L. Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nature Photon. 7, 138–141 (2012)

    ADS  Article  Google Scholar 

  23. 23

    Rajapakse, R. M., Bragdon, T., Rey, A. M., Calarco, T. & Yelin, S. F. Single-photon nonlinearities using arrays of cold polar molecules. Phys. Rev. A 80, 013810 (2009)

    ADS  Article  Google Scholar 

  24. 24

    Drummond, P. D. & He, H. Optical mesons. Phys. Rev. A 56, R1107–R1109 (1997)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Lukin, M. D. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    ADS  CAS  Article  Google Scholar 

  27. 27

    James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    ADS  Article  Google Scholar 

  28. 28

    Adamson, R. B. A., Shalm, L. K., Mitchell, M. W. & Steinberg, A. M. Multiparticle state tomography: hidden differences. Phys. Rev. Lett. 98, 043601 (2007)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Sevinçli, S., Henkel, N., Ates, C. & Pohl, T. Nonlocal nonlinear optics in cold Rydberg gases. Phys. Rev. Lett. 107, 153001 (2011)

    ADS  Article  Google Scholar 

  30. 30

    Heidemann, R. et al. Evidence for coherent collective Rydberg excitation in the strong blockade regime. Phys. Rev. Lett. 99, 163601 (2007)

    ADS  Article  Google Scholar 

  31. 31

    Chen, W. et al. All-optical switch and transistor gated by one stored photon. Science 341, 768–770 (2013)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank H. P. Büchler, T. Pohl, J. Otterbach, P. Strack, M. Gullans and S. Choi for discussions. This work was supported by the NSF, the CUA, DARPA and the AFOSR Quantum Memories MURI and the Packard Foundations. O.F. acknowledges support from the HQOC. A.V.G. and M.D.L. thank KITP for hospitality. A.V.G. acknowledges funding from the Lee A. DuBridge Foundation and the IQIM, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore Foundation.

Author information

Affiliations

Authors

Contributions

The experiment and analysis were carried out by O.F., T.P. and Q.-Y.L. The theoretical modelling was done by A.V.G. All experimental and theoretical work was supervised by M.D.L. and V.V. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Mikhail D. Lukin or Vladan Vuletić.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Methods, Supplementary Figures 1-4 and additional references. (PDF 650 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Firstenberg, O., Peyronel, T., Liang, QY. et al. Attractive photons in a quantum nonlinear medium. Nature 502, 71–75 (2013). https://doi.org/10.1038/nature12512

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing