Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficient planar heterojunction perovskite solar cells by vapour deposition


Many different photovoltaic technologies are being developed for large-scale solar energy conversion1,2,3,4. The wafer-based first-generation photovoltaic devices1 have been followed by thin-film solid semiconductor absorber layers sandwiched between two charge-selective contacts3 and nanostructured (or mesostructured) solar cells that rely on a distributed heterojunction to generate charge and to transport positive and negative charges in spatially separated phases4,5,6. Although many materials have been used in nanostructured devices, the goal of attaining high-efficiency thin-film solar cells in such a way has yet to be achieved7. Organometal halide perovskites have recently emerged as a promising material for high-efficiency nanostructured devices8,9,10,11. Here we show that nanostructuring is not necessary to achieve high efficiencies with this material: a simple planar heterojunction solar cell incorporating vapour-deposited perovskite as the absorbing layer can have solar-to-electrical power conversion efficiencies of over 15 per cent (as measured under simulated full sunlight). This demonstrates that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Material deposition system and characterization.
Figure 2: Thin-film topology characterization.
Figure 3: Solar cell performance.

Similar content being viewed by others


  1. Green, M. A. Silicon photovoltaic modules: a brief history of the first 50 years. Prog. Photovolt. Res. Appl. 13, 447–455 (2005)

    Article  Google Scholar 

  2. Graetzel, M., Janssen, R. A. J., Mitzi, D. B. & Sargent, E. H. Materials interface engineering for solution-processed photovoltaics. Nature 488, 304–312 (2012)

    Article  ADS  CAS  Google Scholar 

  3. Chopra, K. L., Paulson, P. D. & Dutta, V. Thin-film solar cells: an overview. Prog. Photovolt. Res. Appl. 12, 69–92 (2004)

    Article  CAS  Google Scholar 

  4. O’Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Article  ADS  Google Scholar 

  5. Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995)

    Article  ADS  CAS  Google Scholar 

  6. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995)

    Article  ADS  CAS  Google Scholar 

  7. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 40). Prog. Photovolt. Res. Appl. 20, 606–614 (2012)

    Article  Google Scholar 

  8. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)

    Article  ADS  CAS  Google Scholar 

  9. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  CAS  Google Scholar 

  10. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2 591 10.1038/srep00591 (2012)

    Article  Google Scholar 

  11. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Il Seok, S. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)

    Article  ADS  CAS  Google Scholar 

  12. Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Arici, E., Sariciftci, N. S. & Meissner, D. Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices. Adv. Funct. Mater. 13, 165–171 (2003)

    Article  CAS  Google Scholar 

  14. McDonald, S. A. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Mater. 4, 138–142 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Cheng, Z. & Lin, J. Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 12, 2646–2662 (2010)

    Article  CAS  Google Scholar 

  16. Heo, J. H. et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photon. 7, 486–491 (2013)

    Article  ADS  CAS  Google Scholar 

  17. Ball, J. M., Lee, M. M., Hey, A. & Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6, 1739–1743 (2013)

    Article  CAS  Google Scholar 

  18. Mosconi, E., Amat, A., Nazeeruddin, M. K., Grätzel, M. & De Angelis, F. First principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117, 13902–13913 (2013)

    Article  CAS  Google Scholar 

  19. Snaith, H. J., Greenham, N. C. & Friend, R. H. The origin of collected charge and open-circuit voltage in blended polyfluorene photovoltaic devices. Adv. Mater. 16, 1640–1645 (2004)

    Article  CAS  Google Scholar 

  20. Yang, F., Shtein, M. & Forrest, S. R. Morphology control and material mixing by high-temperature organic vapor-phase deposition and its application to thin-film solar cells. J. Appl. Phys. 98, 014906 (2005)

    Article  ADS  Google Scholar 

  21. Sakata, H. et al. in Photovoltaic Specialists Conf. (Conference Record of the Twenty-Eighth IEEE) 7–12 10.1109/PVSC.2000.915742 (2000)

  22. Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–238 (2009)

    Article  ADS  CAS  Google Scholar 

  23. You, H., Dai, Y., Zhang, Z. & Ma, D. Improved performances of organic light-emitting diodes with metal oxide as anode buffer. J. Appl. Phys. 101, 026105 (2007)

    Article  ADS  Google Scholar 

  24. Riede, M. et al. Efficient organic tandem solar cells based on small molecules. Adv. Funct. Mater. 21, 3019–3028 (2011)

    Article  CAS  Google Scholar 

  25. Beiley, Z. M. & McGehee, M. D. Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20%. Energy Environ. Sci. 5, 9173–9179 (2012)

    Article  CAS  Google Scholar 

Download references


This work was funded by EPSRC and the European Research Council (ERC) ‘Hyper Project’ number 279881. The Oxford University Press (John Fell) Fund provided support for equipment used in this study, specifically the organic light-emitting diode vapour-deposition equipment. We thank S. Sun, E. Crossland, P. Docampo, G. Eperon, J. Zhang and J. Liu for discussions and experimental and technical assistance.

Author information

Authors and Affiliations



M.L. performed the experimental work, data analysis and experimental planning. The project was conceived, planned and supervised by H.S. and M.J. The manuscript was written by all three authors.

Corresponding author

Correspondence to Henry J. Snaith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Top-view SEM images for the vapour-deposited perovskite films.

a, As-deposited perovskite film; b, post-annealed perovskite film.

Extended Data Table 1 Tooling factor measurement of the dual-source vapour-deposition system.
Extended Data Table 2 Optimized deposition conditions for the evaporated perovskite solar devices.

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Johnston, M. & Snaith, H. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing