Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens



The human intestine, colonized by a dense community of resident microbes, is a frequent target of bacterial pathogens. Undisturbed, this intestinal microbiota provides protection from bacterial infections. Conversely, disruption of the microbiota with oral antibiotics often precedes the emergence of several enteric pathogens1,2,3,4. How pathogens capitalize upon the failure of microbiota-afforded protection is largely unknown. Here we show that two antibiotic-associated pathogens, Salmonella enterica serovar Typhimurium (S. typhimurium) and Clostridium difficile, use a common strategy of catabolizing microbiota-liberated mucosal carbohydrates during their expansion within the gut. S. typhimurium accesses fucose and sialic acid within the lumen of the gut in a microbiota-dependent manner, and genetic ablation of the respective catabolic pathways reduces its competitiveness in vivo. Similarly, C. difficile expansion is aided by microbiota-induced elevation of sialic acid levels in vivo. Colonization of gnotobiotic mice with a sialidase-deficient mutant of Bacteroides thetaiotaomicron, a model gut symbiont, reduces free sialic acid levels resulting in C. difficile downregulating its sialic acid catabolic pathway and exhibiting impaired expansion. These effects are reversed by exogenous dietary administration of free sialic acid. Furthermore, antibiotic treatment of conventional mice induces a spike in free sialic acid and mutants of both Salmonella and C. difficile that are unable to catabolize sialic acid exhibit impaired expansion. These data show that antibiotic-induced disruption of the resident microbiota and subsequent alteration in mucosal carbohydrate availability are exploited by these two distantly related enteric pathogens in a similar manner. This insight suggests new therapeutic approaches for preventing diseases caused by antibiotic-associated pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: B. thetaiotaomicron facilitates S. typhimurium and C. difficile carbohydrate utilization during emergence.
Figure 2: B. thetaiotaomicron liberated sialic acid promotes emergence of S. typhimurium and C. difficile.
Figure 3: S. typhimurium and C. difficile use mucin-derived monosaccharides resulting from antibiotic treatment of conventional mice.

Similar content being viewed by others

Accession codes


European Nucleotide Archive

Gene Expression Omnibus

Data deposits

Microbiota enumeration (16S rRNA) datasets have been deposited in the EMBL European Nucleotide Archive (ENA) under accession number ERP003629 and can also be found in the QIIME Database under the study ID 1958 ( Gene Chip datasets are available in the GEO database under accession number GSE49076.


  1. Doorduyn, Y., Van Den Brandhof, W. E., Van Duynhoven, Y. T., Wannet, W. J. & Van Pelt, W. Risk factors for Salmonella Enteritidis and Typhimurium (DT104 and non-DT104) infections in The Netherlands: predominant roles for raw eggs in Enteritidis and sandboxes in Typhimurium infections. Epidemiol. Infect. 134, 617–626 (2006)

    Article  CAS  Google Scholar 

  2. Pavia, A. T. et al. Epidemiologic evidence that prior antimicrobial exposure decreases resistance to infection by antimicrobial-sensitive Salmonella. J. Infect. Dis. 161, 255–260 (1990)

    Article  CAS  Google Scholar 

  3. Pépin, J. et al. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin. Infect. Dis. 41, 1254–1260 (2005)

    Article  Google Scholar 

  4. Kelly, C. P., Pothoulakis, C. & LaMont, J. T. Clostridium difficile colitis. N. Engl. J. Med. 330, 257–262 (1994)

    Article  CAS  Google Scholar 

  5. Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005)

    Article  ADS  Google Scholar 

  6. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010)

    Article  CAS  Google Scholar 

  7. Stecher, B. et al. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. 6, e1000711 (2010)

    Article  Google Scholar 

  8. Chang, D. E. et al. Carbon nutrition of Escherichia coli in the mouse intestine. Proc. Natl Acad. Sci. USA 101, 7427–7432 (2004)

    Article  CAS  ADS  Google Scholar 

  9. Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005)

    Article  CAS  ADS  Google Scholar 

  10. Martens, E. C., Chiang, H. C. & Gordon, J. I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4, 447–457 (2008)

    Article  CAS  Google Scholar 

  11. Fabich, A. J. et al. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect. Immun. 76, 1143–1152 (2008)

    Article  CAS  Google Scholar 

  12. Kamada, N. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012)

    Article  CAS  ADS  Google Scholar 

  13. Pacheco, A. R. et al. Fucose sensing regulates bacterial intestinal colonization. Nature 492, 113–117 (2012)

    Article  CAS  ADS  Google Scholar 

  14. Maltby, R., Leatham-Jensen, M. P., Gibson, T., Cohen, P. S. & Conway, T. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine. PLoS ONE 8, e53957 (2013)

    Article  CAS  ADS  Google Scholar 

  15. Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6, e280 (2008)

    Article  Google Scholar 

  16. Hapfelmeier, S. & Hardt, W. D. A mouse model for S. typhimurium-induced enterocolitis. Trends Microbiol. 13, 497–503 (2005)

    Article  CAS  Google Scholar 

  17. Lawley, T. D. et al. Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect. Immun. 76, 403–416 (2008)

    Article  CAS  Google Scholar 

  18. Lawley, T. D. et al. Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect. Immun. 77, 3661–3669 (2009)

    Article  CAS  Google Scholar 

  19. Chen, X. et al. A mouse model of Clostridium difficile-associated disease. Gastroenterology 135, 1984–1992 (2008)

    Article  Google Scholar 

  20. Vimr, E. R., Kalivoda, K. A., Deszo, E. L. & Steenbergen, S. M. Diversity of microbial sialic acid metabolism. Microbiol. Mol. Biol. Rev. 68, 132–153 (2004)

    Article  CAS  Google Scholar 

  21. Marcobal, A. et al. Consumption of human milk oligosaccharides by gut-related microbes. J. Agric. Food Chem. 58, 5334–5340 (2010)

    Article  CAS  Google Scholar 

  22. Hoyer, L. L., Hamilton, A. C., Steenbergen, S. M. & Vimr, E. R. Cloning, sequencing and distribution of the Salmonella typhimurium LT2 sialidase gene, nanH, provides evidence for interspecies gene transfer. Mol. Microbiol. 6, 873–884 (1992)

    Article  CAS  Google Scholar 

  23. Sebaihia, M. et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nature Genet. 38, 779–786 (2006)

    Article  Google Scholar 

  24. Stecher, B. et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5, e244 (2007)

    Article  Google Scholar 

  25. Winter, S. E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010)

    Article  CAS  ADS  Google Scholar 

  26. Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007)

    Article  CAS  Google Scholar 

  27. Barman, M. et al. Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect. Immun. 76, 907–915 (2008)

    Article  CAS  Google Scholar 

  28. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000)

    Article  CAS  ADS  Google Scholar 

  29. Vimr, E. R. & Troy, F. A. Identification of an inducible catabolic system for sialic acids (nan) in Escherichia coli. J. Bacteriol. 164, 845–853 (1985)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Heap, J. T. et al. The ClosTron: mutagenesis in Clostridium refined and streamlined. J. Microbiol. Methods 80, 49–55 (2010)

    Article  CAS  Google Scholar 

  31. Adams, C. M. et al. Structural and functional studies of the CspB protease required for Clostridium spore germination. PLoS Pathog. 9, e1003165 (2013)

    Article  CAS  Google Scholar 

  32. O’Connor, J. R. et al. Construction and analysis of chromosomal Clostridium difficile mutants. Mol. Microbiol. 61, 1335–1351 (2006)

    Article  Google Scholar 

  33. Sonnenburg, E. D. et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell 141, 1241–1252 (2010)

    Article  CAS  Google Scholar 

  34. Stevens, J. R. et al. Statistical issues in the normalization of multi-species microarray data. Appl. Stat. Agric. Proc. Conf. Appl. Stat. Agric. Kansas State Univ. 47–62 (National Agricultural Library, 2008)

  35. Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–5121 (2001)

    Article  CAS  ADS  Google Scholar 

  36. Manzi, A. E., Diaz, S. & Varki, A. High-pressure liquid chromatography of sialic acids on a pellicular resin anion-exchange column with pulsed amperometric detection: a comparison with six other systems. Anal. Biochem. 188, 20–32 (1990)

    Article  CAS  Google Scholar 

  37. Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012)

    Article  CAS  Google Scholar 

  38. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336 (2010)

    Article  CAS  Google Scholar 

  39. Lozupone, C., Hamady, M. & Knight, R. UniFrac–an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7, 371 (2006)

    Article  Google Scholar 

Download references


We thank E. Sonnenburg for comments on the manuscript; M. St. Onge for technical assistance; and A. Shen, N. Minton and R. Knight for valuable help and reagents. This research was supported by R01-DK085025 (to J.L.S.), NSF graduate fellowships (to K.M.N. and J.A.F) and a Stanford Graduate Fellowship (to K.M.N.). J.L.S. holds an Investigators in the Pathogenesis of Infectious Disease Award from the Burroughs Wellcome Fund.

Author information

Authors and Affiliations



K.M.N., J.A.F., D.M.M. and J.L.S. designed experiments. K.M.N., J.A.F., S.K.H., J.B.L., P.C.K., N.N., B.C. and J.L.S. performed experiments. K.M.N., J.A.F., P.C.K., S.G., N.N., D.M.M. and J.L.S. analysed data. D.M.M. and B.C.W. contributed reagents. K.M.N., J.A.F. and J.L.S. wrote the paper.

Corresponding author

Correspondence to Justin L. Sonnenburg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains Supplementary Figures 1-11 and Supplementary Tables 1-3. (PDF 2054 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, K., Ferreyra, J., Higginbottom, S. et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502, 96–99 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing