Alkane desaturation by concerted double hydrogen atom transfer to benzyne


The removal of two vicinal hydrogen atoms from an alkane to produce an alkene is a challenge for synthetic chemists1,2. In nature, desaturases and acetylenases are adept at achieving this essential oxidative functionalization reaction, for example during the biosynthesis of unsaturated fatty acids3, eicosanoids, gibberellins4 and carotenoids5. Alkane-to-alkene conversion almost always involves one or more chemical intermediates in a multistep reaction pathway; these may be either isolable species (such as alcohols or alkyl halides) or reactive intermediates (such as carbocations, alkyl radicals, or σ-alkyl-metal species). Here we report a desaturation reaction of simple, unactivated alkanes that is mechanistically unique. We show that benzynes are capable of the concerted removal of two vicinal hydrogen atoms from a hydrocarbon. The discovery of this exothermic, net redox process was enabled by the simple thermal generation of reactive benzyne intermediates through the hexadehydro-Diels–Alder cycloisomerization reaction of triyne substrates6. We are not aware of any single-step, bimolecular reaction in which two hydrogen atoms are simultaneously transferred from a saturated alkane. Computational studies indicate a preferred geometry with eclipsed vicinal C–H bonds in the alkane donor.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Introduction and background.
Figure 2: Both hydrogen atoms come from the same donor molecule.
Figure 3: Dihydrogen transfer between arynes and cyclic hydrocarbons.


  1. 1

    Linstead, R. P., Braude, E. A., Mitchell, P. W. D., Wooldridge, K. R. H. & Jackman, L. M. Transfer of hydrogen in organic systems. Nature 169, 100–103 (1952)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Bloomfield, D. K. & Bloch, K. The formation of Δ9-unsaturated fatty acids. J. Biol. Chem. 235, 337–345 (1960)

    CAS  PubMed  Google Scholar 

  3. 3

    Buist, P. H. Fatty acid desaturases: selecting the dehydrogenation channel. Nat. Prod. Rep. 21, 249–262 (2004)

    CAS  Article  Google Scholar 

  4. 4

    Bhattacharya, A. et al. Characterization of the fungal gibberellin desaturase as a 2-oxoglutarate-dependent dioxygenase and its utilization for enhancing plant growth. Plant Physiol. 160, 837–845 (2012)

    CAS  Article  Google Scholar 

  5. 5

    Moran, N. A. & Jarvik, T. Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328, 624–627 (2010)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Hoye, T. R., Baire, B., Niu, D., Willoughby, P. H. & Woods, B. P. The hexadehydro-Diels–Alder reaction. Nature 490, 208–212 (2012)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Hoffmann, R. W. Dehydrobenzene and Cycloalkynes (Organic Chemistry Vol. 11) (Academic, 1967)

    Google Scholar 

  8. 8

    Tadross, P. M. & Stoltz, B. M. A comprehensive history of arynes in natural product total synthesis. Chem. Rev. 112, 3550–3577 (2012)

    CAS  Article  Google Scholar 

  9. 9

    Baire, B., Niu, D., Willoughby, P. H., Woods, B. P. & Hoye, T. R. Synthesis of complex benzenoids via the intermediate generation of o-benzynes through the hexadehydro-Diels–Alder reaction. Nature Protocols 8, 501–508 (2013)

    CAS  Article  Google Scholar 

  10. 10

    Miyawaki, K., Suzuki, R., Kawano, T. & Ueda, I. Cycloaromatization of a non-conjugated polyenyne system: synthesis of 5H-benzo[d]fluoreno[3,2-b]pyrans via diradicals generated from 1-[2-{4-(2-alkoxymethylphenyl)butan-1,3-diynyl}]phenylpentan-2,4-diyn-l-ols and trapping evidence for the 1,2-didehydrobenzene diradical. Tetrahedr. Lett. 38, 3943–3946 (1997)

    CAS  Article  Google Scholar 

  11. 11

    Bradley, A. Z. & Johnson, R. P. Thermolysis of 1,3,8-nonatriyne: evidence for intramolecular [2+4] cycloaromatization to a benzyne intermediate. J. Am. Chem. Soc. 119, 9917–9918 (1997)

    CAS  Article  Google Scholar 

  12. 12

    Ajaz, A. et al. Concerted vs. stepwise mechanisms in dehydro-Diels–Alder reactions. J. Org. Chem. 76, 9320–9328 (2011)

    CAS  Article  Google Scholar 

  13. 13

    Hoffmann, R. W. & Suzuki, K. A ‘hot, energized’ benzyne. Angew. Chem. Int. Ed. 52, 2–4 (2013)

    Google Scholar 

  14. 14

    Yun, S. Y., Wang, K.-P., Lee, N.-K., Mamidipalli, P. & Lee, D. Alkane C–H insertion by aryne intermediates with a silver catalyst. J. Am. Chem. Soc. 135, 4668–4671 (2013)

    CAS  Article  Google Scholar 

  15. 15

    Voica, A.-F., Mendoza, A., Gutekunst, W. R., Fraga, J. O. & Baran, P. S. Guided desaturation of unactivated aliphatics. Nature Chem. 4, 629–635 (2012)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Tsui, J. A. & Sterenberg, B. T. A metal-templated 4 + 2 cycloaddition reaction of an alkyne and a diyne to form a 1,2-aryne. Organometallics 28, 4906–4908 (2009)

    CAS  Article  Google Scholar 

  17. 17

    de Almeida, G., Townsend, L. C. & Bertozzi, C. R. Synthesis and reactivity of dibenzoselenacycloheptynes. Org. Lett. 15, 3038–3041 (2013)

    CAS  Article  Google Scholar 

  18. 18

    Hünig, S., Müller, H. & Thier, W. Reduktionen mit diimid. Tetrahedr. Lett. 2, 353–357 (1961)

    Article  Google Scholar 

  19. 19

    Corey, E. J., Pasto, D. J. & Mock, W. L. Chemistry of diimide. II. Stereochemistry of hydrogen transfer to carbon–carbon multiple bonds. J. Am. Chem. Soc. 83, 2957–2958 (1961)

    CAS  Article  Google Scholar 

  20. 20

    Fernández, I., Cossío, F. P. & Sierra, M. A. Dyotropic reactions: mechanisms and synthetic applications. Chem. Rev. 109, 6687–6711 (2009)

    Article  Google Scholar 

  21. 21

    Fernández, I., Sierra, M. A. & Cossío, F. P. In-plane aromaticity in double-group transfer reactions. J. Org. Chem. 72, 1488–1491 (2007)

    Article  Google Scholar 

  22. 22

    Hoye, T. R., Eklov, B. M., Ryba, T. D., Voloshin, M. & Yao, L. J. No-D NMR (no deuterium proton NMR) spectroscopy: a simple yet powerful method for analyzing reaction and reagent solutions. Org. Lett. 6, 953–956 (2004)

    CAS  Article  Google Scholar 

  23. 23

    Himeshima, Y., Sonoda, T. & Kobayashi, H. Fluoride-induced 1,2-elimination of o-trimethylsilylphenyl triflate to benzyne under mild conditions. Chem. Lett. 12, 1211–1214 (1983)

    Article  Google Scholar 

  24. 24

    Ma, Z.-X., Feltenberger, J. B. & Hsung, R. P. Total syntheses of chelidonine and norchelidonine via an enamide–benzyne–[2+2] cycloaddition cascade. Org. Lett. 14, 2742–2745 (2012)

    CAS  Article  Google Scholar 

  25. 25

    Sumida, Y., Kato, T. & Hosoya, T. Generation of arynes via ate complexes of arylboronic esters with an ortho-leaving group. Org. Lett. 15, 2806–2809 (2013)

    CAS  Article  Google Scholar 

  26. 26

    Davies, H. M. L., Du Bois, J. & Yu, J.-Q. C–H functionalization in organic synthesis. Chem. Soc. Rev. 40, 1855–1856 (2011)

    CAS  Article  Google Scholar 

  27. 27

    Paul, G. F., Jak, B. & Lankin, D. A. Routine experimental protocol for qHNMR illustrated with taxol. J. Nat. Prod. 70, 589–595 (2007)

    Article  Google Scholar 

Download references


We thank C. J. Cramer for helpful discussions about the computational studies. D.N. and P.H.W. thank the University of Minnesota Graduate School Doctoral Dissertation Fellowship and National Science Foundation Graduate Research Fellowship program, respectively. Financial support from the National Institute of General Medical Sciences (GM65597) and the National Cancer Institute (CA76497) of the US Department of Health and Human Services is acknowledged. Portions of this work were performed with hardware and software resources available through the University of Minnesota Supercomputing Institute (MSI).

Author information




D.N. made the initial key observations and performed most of the scope studies. P.H.W. performed most of the mechanistic studies. B.P.W. and B.B. also performed aspects of the experimental work. All authors interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Thomas R. Hoye.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains General Experimental Protocols; Preparation procedures and Characterization data for all new compounds; Computational details for double hydrogen atom transfer reactions; Supplementary References and Copies of 1H and 13C NMR spectra of all new compounds (see Contents list for details). (PDF 4471 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Niu, D., Willoughby, P., Woods, B. et al. Alkane desaturation by concerted double hydrogen atom transfer to benzyne. Nature 501, 531–534 (2013).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing