Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-chondritic sulphur isotope composition of the terrestrial mantle

Subjects

Abstract

Core–mantle differentiation is the largest event experienced by a growing planet during its early history. Terrestrial core segregation imprinted the residual mantle composition by scavenging siderophile (iron-loving) elements such as tungsten, cobalt and sulphur. Cosmochemical constraints suggest that about 97% of Earth’s sulphur should at present reside in the core1, which implies that the residual silicate mantle should exhibit fractionated 34S/32S ratios according to the relevant metal–silicate partition coefficients2, together with fractionated siderophile element abundances. However, Earth’s mantle has long been thought to be both homogeneous and chondritic for 34S/32S, similar to Canyon Diablo troilite3,4,5,6, as it is for most siderophile elements. This belief was consistent with a mantle sulphur budget dominated by late-accreted chondritic components. Here we show that the mantle, as sampled by mid-ocean ridge basalts from the south Atlantic ridge, displays heterogeneous 34S/32S ratios, directly correlated to the strontium and neodymium isotope ratios 87Sr/86Sr and 143Nd/144Nd. These isotope trends are compatible with binary mixing between a low-34S/32S ambient mantle and a high-34S/32S recycled component that we infer to be subducted sediments. The depleted end-member is characterized by a significantly negative δ34S of −1.28 ± 0.33‰ that cannot reach a chondritic value even when surface sulphur (from continents, altered oceanic crust, sediments and oceans) is added. Such a non-chondritic 34S/32S ratio for the silicate Earth could be accounted for by a core–mantle differentiation record in which the core has a 34S/32S ratio slightly higher than that of chondrites (δ34S = +0.07‰). Despite evidence for late-veneer addition of siderophile elements (and therefore sulphur) after core formation, our results imply that the mantle sulphur budget retains fingerprints of core–mantle differentiation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: δ34S versus 87Sr/86Sr and 143Nd/144Nd.
Figure 2: Core–mantle sulphur partitioning model in batch equilibrium or open system.

References

  1. 1

    Dreibus, G. & Palme, H. Cosmochemical constraints on the sulfur content in the Earth’s core. Geochim. Cosmochim. Acta 60, 1125–1130 (1996)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Shahar, A., Fei, Y., Liu, M. C. & Wang, J. Sulfur isotopic fractionation during the differentiation of Mars. Geochim. Cosmochim. Acta 73 (Suppl.). A1201 (2009)

    Google Scholar 

  3. 3

    Gao, X. & Thiemens, M. Isotopic composition and concentration of sulfur in carbonaceous chondrites. Geochim. Cosmochim. Acta 57, 3159–3169 (1993)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Gao, X. & Thiemens, M. Variations of the isotopic composition of sulfur in enstatite and ordinary chondrites. Geochim. Cosmochim. Acta 57, 3171–3176 (1993)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Sakai, H., Marais, D. J., Ueda, A. & Moore, J. G. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochim. Cosmochim. Acta 48, 2433–2441 (1984)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Chaussidon, M., Sheppard, S. M. F. & Michard, A. Hydrogen, sulphur and neodymium isotope variations in the mantle beneath the EPR at 12°50’N. J. Geochem. Soc. 3, 325–337 (1991)

    Google Scholar 

  7. 7

    Labidi, J., Cartigny, P., Birck, J. L., Assayag, N. & Bourrand, J. J. Determination of multiple sulfur isotopes in glasses: a reappraisal of the MORB δ34S. Chem. Geol. 334, 189–198 (2012)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Douglass, J., Schilling, J. G. & Fontignie, D. Plume-ridge interactions of the Discovery and Shona mantle plumes with the southern Mid-Atlantic Ridge (40°-55°S). J. Geophys. Res. 104, 2941–2962 (1999)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Andres, M., Blichert-Toft, J. & Schilling, J. G. Hafnium isotopes in basalts from the southern Mid-Atlantic Ridge from 40°S to 55°S: discovery and Shona plume-ridge interactions and the role of recycled sediments. Geochem. Geophys. Geosyst. 3, 1–25 (2002)

    Article  Google Scholar 

  10. 10

    Escrig, S., Schiano, P., Schilling, J. G. & Allègre, C. Rhenium-osmium isotope systematics in MORB from the Southern Mid-Atlantic Ridge (40°-50°S). Earth Planet. Sci. Lett. 235, 528–548 (2005)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Moreira, M., Staudacher, T., Sarda, P., Schilling, J. G. & Allègre, C. J. A primitive plume neon component in MORB: the Shona ridge-anomaly, South Atlantic (51–52°S). Earth Planet. Sci. Lett. 133, 367–377 (1995)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Sarda, P., Moreira, M., Staudacher, T., Schilling, J. G. & Allègre, C. J. Rare gas systematics on the southernmost Mid-Atlantic Ridge: constraints on the lower mantle and the Dupal source. J. Geophys. Res. 105, 5973–5996 (2000)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Dixon, J. E., Leist, L., Langmuir, C. & Schilling, J. G. Recycled dehydrated lithosphere observed in plume influenced mid-ocean-ridge basalt. Nature 420, 385–389 (2002)

    ADS  CAS  Article  Google Scholar 

  14. 14

    le Roux, P. J. le Roex, A. P. & Schilling, J. G. MORB melting processes beneath the southern Mid-Atlantic Ridge (40–55°S): a role for mantle plume-derived pyroxenite. Contrib. Mineral. Petrol. 144, 206–229 (2002)

    ADS  CAS  Article  Google Scholar 

  15. 15

    le Roux, P. J. et al. Mantle heterogeneity beneath the southern Mid-Atlantic Ridge: trace element evidence for contamination of ambient asthenospheric mantle. Earth Planet. Sci. Lett. 203, 479–498 (2002)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Mathez, E. A. Sulfur solubility and magmatic sulfides in submarine basalt glass. J. Geophys. Res. 81, 4269–4276 (1976)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Wallace, P. & Carmichael, I. S. E. Sulfur in basaltic magmas. Geochim. Cosmochim. Acta 56, 1863–1874 (1992)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Métrich, N., Berry, A. J., O’Neill, H. S. C. & Susini, J. The oxidation state of sulfur in synthetic and natural glasses determined by X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 73, 2382–2399 (2009)

    ADS  Article  Google Scholar 

  19. 19

    Dixon, J. E., Clague, D. A. & Stolper, E. M. Degassing history of water, sulfur, and carbon in submarine lavas from Kilauea Volcano, Hawaii. J. Geol. 99, 371–394 (1991)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Cabral, R. A. et al. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 496, 490–493 (2013)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Kelley, K., Plank, T., Ludden, J. & Staudigel, H. Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochem. Geophys. Geosyst. 4, 8910 (2003)

    ADS  Article  Google Scholar 

  22. 22

    O’Neill, H. S. C. The origin of the Moon and the early history of the Earth—a chemical model. Part 2: The Earth. Geochim. Cosmochim. Acta 55, 1159–1172 (1991)

    ADS  Article  Google Scholar 

  23. 23

    McDonough, W. F. Constraints on the composition of the continental lithospheric mantle. Earth Planet. Sci. Lett. 101, 1–18 (1990)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Rudnick, R. L. & Gao, S. Composition of the continental crust. Treat. Geochem. 3, 1–64 (2003)

    ADS  Google Scholar 

  25. 25

    Plank, T. & Langmuir, C. H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394 (1998)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Poulton, S. W., Fralick, P. W. & Canfield, D. E. The transition to a sulphidic ocean 1.84 billion years ago. Nature 431, 173–177 (2004)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Canfield, D. E. & Farquhar, J. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc. Natl Acad. Sci. USA 106, 8123–8127 (2009)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Caro, G. & Bourdon, B. Non-chondritic Sm/Nd ratio in the terrestrial planets: consequences for the geochemical evolution of the mantle–crust system. Geochim. Cosmochim. Acta 74, 3333–3349 (2010)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Wedepohl, K. H. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Righter, K., Humayun, M. & Danielson, L. Partitioning of palladium at high pressures and temperatures during core formation. Nature Geosci. 1, 321–323 (2008)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Bonifacie, M. et al. The chlorine isotope composition of Earth’s mantle. Science 319, 1518–1520 (2008)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

Support from the Region Ile de France (Sesame), CNRS (INSU-Mi-lourd and SEDIT-CNRS) and IPGP (BQR) is acknowledged. We thank M. G. Jackson for a review. We thank D. Calmels and M. Clog for discussion and comments. We also thank P. Richet, M. Chaussidon and P. Agrinier for comments on an early version of the manuscript. This is IPGP contribution number 3415.

Author information

Affiliations

Authors

Contributions

J.L. performed sulphur isotope measurements. J.L. and M.M. performed sample preparation. P.C. conceived the project. J.L. took the lead in writing the paper, with substantial contributions from P.C. and M.M.

Corresponding author

Correspondence to J. Labidi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary References, Supplementary Table 1 and Supplementary Figures 1-6. (PDF 1012 kb)

Supplementary Data

This file contains the complete geochemical database for the studied samples. (XLS 136 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Labidi, J., Cartigny, P. & Moreira, M. Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature 501, 208–211 (2013). https://doi.org/10.1038/nature12490

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing