Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of dipolar spin-exchange interactions with lattice-confined polar molecules

Abstract

With the production of polar molecules in the quantum regime1,2, long-range dipolar interactions are expected to facilitate understanding of strongly interacting many-body quantum systems and to realize lattice spin models3 for exploring quantum magnetism. In ordinary atomic systems, where contact interactions require wavefunction overlap, effective spin interactions on a lattice can be mediated by tunnelling, through a process referred to as superexchange; however, the coupling is relatively weak and is limited to nearest-neighbour interactions4,5. In contrast, dipolar interactions exist even in the absence of tunnelling and extend beyond nearest neighbours. This allows coherent spin dynamics to persist even for gases with relatively high entropy and low lattice filling. Measured effects of dipolar interactions in ultracold molecular gases have been limited to the modification of inelastic collisions and chemical reactions6,7. Here we use dipolar interactions of polar molecules pinned in a three-dimensional optical lattice to realize a lattice spin model. Spin is encoded in rotational states of molecules that are prepared and probed by microwaves. Resonant exchange of rotational angular momentum between two molecules realizes a spin-exchange interaction. The dipolar interactions are apparent in the evolution of the spin coherence, which shows oscillations in addition to an overall decay of the coherence. The frequency of these oscillations, the strong dependence of the spin coherence time on the lattice filling factor and the effect of a multipulse sequence designed to reverse dynamics due to two-body exchange interactions all provide evidence of dipolar interactions. Furthermore, we demonstrate the suppression of loss in weak lattices due to a continuous quantum Zeno mechanism8. Measurements of these tunnelling-induced losses allow us to determine the lattice filling factor independently. Our work constitutes an initial exploration of the behaviour of many-body spin models with direct, long-range spin interactions and lays the groundwork for future studies of many-body dynamics in spin lattices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dipolar interactions of polar molecules in a 3D lattice.
Figure 2: Coherent spin dynamics of polar molecules.
Figure 3: Multipulse sequence and decoupling of pairwise dipolar interactions.
Figure 4: Quantum Zeno effect for polar molecules in a 3D lattice.

Similar content being viewed by others

References

  1. Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008)

    Article  ADS  CAS  Google Scholar 

  2. Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327, 853–857 (2010)

    Article  ADS  CAS  Google Scholar 

  3. Micheli, A., Brennen, G. K. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nature Phys. 2, 341–347 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Trotzky, S. et al. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science 319, 295–299 (2008)

    Article  ADS  CAS  Google Scholar 

  5. Greif, D., Uehlinger, T., Jotzu, G., Tarruell, L. & Esslinger, T. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science 340, 1307–1310 (2013)

    Article  ADS  CAS  Google Scholar 

  6. Ni, K.-K. et al. Dipolar collisions of polar molecules in the quantum regime. Nature 464, 1324–1328 (2010)

    Article  ADS  CAS  Google Scholar 

  7. de Miranda, M. H. G. et al. Controlling the quantum stereodynamics of ultracold bimolecular reactions. Nature Phys. 7, 502–507 (2011)

    Article  ADS  CAS  Google Scholar 

  8. Syassen, N. et al. Strong dissipation inhibits losses and induces correlations in cold molecular gases. Science 320, 1329–1331 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009)

    Article  ADS  Google Scholar 

  10. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009)

    Article  ADS  Google Scholar 

  11. Potter, A. C., Berg, E., Wang, D.-W., Halperin, B. I. & Demler, E. Superfluidity and dimerization in a multilayered system of fermionic polar molecules. Phys. Rev. Lett. 105, 220406 (2010)

    Article  ADS  Google Scholar 

  12. Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011)

    Article  ADS  Google Scholar 

  13. Yao, N. Y. et al. Topological flat bands from dipolar spin systems. Phys. Rev. Lett. 109, 266804 (2012)

    Article  ADS  CAS  Google Scholar 

  14. Ospelkaus, S. et al. Controlling the hyperfine state of rovibronic ground-state polar molecules. Phys. Rev. Lett. 104, 030402 (2010)

    Article  ADS  CAS  Google Scholar 

  15. Chotia, A. et al. Long-lived dipolar molecules and Feshbach molecules in a 3D optical lattice. Phys. Rev. Lett. 108, 080405 (2012)

    Article  ADS  Google Scholar 

  16. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Hazzard, K. R. A., Manmana, S. R., Foss-Feig, M. & Rey, A. M. Far-from-equilibrium quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 110, 075301 (2013)

    Article  ADS  Google Scholar 

  18. Lu, M., Burdick, N. Q. & Lev, B. L. Quantum degenerate dipolar Fermi gas. Phys. Rev. Lett. 108, 215301 (2012)

    Article  ADS  Google Scholar 

  19. Aikawa, K. et al. Bose–Einstein condensation of erbium. Phys. Rev. Lett. 108, 210401 (2012)

    Article  ADS  CAS  Google Scholar 

  20. de Paz, A. et al. Resonant demagnetization of a dipolar BEC in a 3D optical lattice. Phys. Rev. A 87, 051609(R) (2013)

    Article  ADS  Google Scholar 

  21. Britton, J. W. et al. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012)

    Article  ADS  CAS  Google Scholar 

  22. Islam, R. et al. Emergence and frustration of magnetism with variable-range interactions in a quantum simulator. Science 340, 583–587 (2013)

    Article  ADS  CAS  Google Scholar 

  23. Nipper, J. et al. Atomic pair-state interferometer: controlling and measuring an interaction-induced phase shift in Rydberg-atom pairs. Phys. Rev. X 2, 031011 (2012)

    Google Scholar 

  24. Barnett, R., Petrov, D., Lukin, M. & Demler, E. Quantum magnetism with multicomponent dipolar molecules in an optical lattice. Phys. Rev. Lett. 96, 190401 (2006)

    Article  ADS  Google Scholar 

  25. Neyenhuis, B. et al. Anisotropic polarizability of ultracold polar KRb molecules. Phys. Rev. Lett. 109, 230403 (2012)

    Article  ADS  CAS  Google Scholar 

  26. Martin, M. J. et al. A quantum many-body spin system in an optical lattice clock. Science 341, 632–636 (2013)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  27. Waugh, J. S., Huber, L. M. & Haeberlen, U. Approach to high-resolution NMR in solids. Phys. Rev. Lett. 20, 180–182 (1968)

    Article  ADS  CAS  Google Scholar 

  28. Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012)

    Article  ADS  CAS  Google Scholar 

  29. Itano, W. M., Heinzen, D. J., Bollinger, J. J. & Wineland, D. J. Quantum Zeno effect. Phys. Rev. A 41, 2295–2300 (1990)

    Article  ADS  CAS  Google Scholar 

  30. Baur, S. K. & Mueller, E. J. Two-body recombination in a quantum-mechanical lattice gas: entropy generation and probing of short-range magnetic correlations. Phys. Rev. A 82, 023626 (2010)

    Article  ADS  Google Scholar 

  31. Quéméner, G., Bohn, J. L., Petrov, A. & Kotochigova, S. Universalities in ultracold reactions of alkali-metal polar molecules. Phys. Rev. A 84, 062703 (2011)

    Article  ADS  Google Scholar 

  32. Witzel, W. M., de Sousa, R. & Das Sarma, S. Quantum theory of spectral-diffusion-induced electron spin decoherence. Phys. Rev. B 72, 161306 (2005)

    Article  ADS  Google Scholar 

  33. Maze, J. R., Taylor, J. M. & Lukin, M. D. Electron spin decoherence of single nitrogen-vacancy defects in diamond. Phys. Rev. B 78, 094303 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Zhu, M. Foss-Feig, G. Quéméner and M. Lukin for discussions. We acknowledge funding for this work from the NIST, NSF, AFOSR-ARO (MURI), ARO, DOE and ARO-DARPA-OLE. S.A.M. is supported by an NDSEG Graduate Fellowship. B.G. and K.R.A.H. are National Research Council postdoctoral fellows. K.R.A.H. and A.M.R. thank the KITP for hospitality.

Author information

Authors and Affiliations

Authors

Contributions

The experimental work and data analysis were carried out by B.Y., S.A.M., B.G., J.P.C., D.S.J. and J.Y. Theoretical modelling and calculations were done by K.R.A.H. and A.M.R. All authors discussed the results and contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Deborah S. Jin or Jun Ye.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-3. Supplementary Figure 1 depicts the dependence of differential light shifts on lattice depth for several rotationally excited states, Supplementary Figure 2 shows the insensitivity of Ramsey contrast oscillations to the confining lattice depth and Supplementary Figure 3 shows the determination of the two-body loss coefficient for a rotational-state mixture. (PDF 200 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, B., Moses, S., Gadway, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013). https://doi.org/10.1038/nature12483

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12483

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing