Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars

Abstract

Several irregularly shaped craters located within Arabia Terra, Mars, represent a new type of highland volcanic construct and together constitute a previously unrecognized Martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae possess a range of geomorphic features related to structural collapse, effusive volcanism and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulphur and erupted fine-grained pyroclastics from these calderas probably fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. The discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Geographic context of the northern Arabia Terra region.
Figure 2: The geology of Eden patera.
Figure 3: The geology of Siloe and Euphrates paterae.
Figure 4: Comparison of thermokarst features, terrestrial supervolcanoes and the putative supervolcanoes on Mars.
Figure 5: Comparison of the depth-to-diameter ratios of possible Martian supervolcanoes with those of known impact craters.
Figure 6: Links to global geology.

References

  1. 1

    Malin, M. C. & Edgett, K. S. Sedimentary rocks of early Mars. Science 290, 1927–1937 (2000)

    CAS  ADS  Article  Google Scholar 

  2. 2

    Edgett, K. S. & Malin, M. C. Martian sedimentary rock stratigraphy: outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra. Geophys. Res. Lett.. 29(24), 2179, http://dx.doi.org/10.1029/2002gl016515 (2002)

    ADS  Article  Google Scholar 

  3. 3

    Hynek, B. M. Implications for hydrologic processes on Mars from extensive bedrock outcrops throughout Terra Meridiani. Nature 431, 156–159 (2004)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Bibring, J. P. et al. Global mineralogical and aqueous mars history derived from OMEGA/Mars express data. Science 312, 400–404 (2006)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Hynek, B. M., Phillips, R. J. & Arvidson, R. E. Explosive volcanism in the Tharsis region: global evidence in the Martian geologic record. J. Geophys. Res. Planets 108, 5111, http://dx.doi.org/10.1029/2003je002062 (2003)

    ADS  Article  Google Scholar 

  6. 6

    Gendrin, A. et al. Sulfates in martian layered terrains: the OMEGA/Mars Express view. Science 307, 1587–1591 (2005)

    CAS  ADS  Article  Google Scholar 

  7. 7

    McCollom, T. M. & Hynek, B. M. A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars. Nature 438, 1129–1131 (2005)

    CAS  ADS  Article  Google Scholar 

  8. 8

    Wilson, L. & Head, J. W. Explosive volcanic eruptions on Mars: tephra and accretionary lapilli formation, dispersal and recognition in the geologic record. J. Volcanol. Geotherm. Res. 163, 83–97 (2007)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Kerber, L., Head, J., Madeleine, J. B., Forget, F. & Wilson, L. The dispersal of pyroclasts from ancient explosive volcanoes on Mars: implications for the friable layered deposits. Icarus 219, 358–381 (2012)

    ADS  Article  Google Scholar 

  10. 10

    Greeley, R. & Spudis, P. Volcanism on Mars. Rev. Geophys. 19 (1). 13–41 (1981)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Golombek, M. P. et al. Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars. J. Geophys. Res. Planets 111, E12S10, http://dx.doi.org/10.1029/2006je002754 (2006)

    ADS  Google Scholar 

  12. 12

    Williams, D. A. et al. The Circum-Hellas Volcanic Province, Mars: overview. Planet. Space Sci. 57, 895–916 (2009)

    ADS  Article  Google Scholar 

  13. 13

    Xiao, L. et al. Ancient volcanism and its implications for thermal evolution of Mars. Earth Planet. Sci. Lett. 323–324, 9–18 (2012)

    ADS  Article  Google Scholar 

  14. 14

    Zuber, M. T. The crust and mantle of Mars. Nature 412, 220–227 (2001)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Bandfield, J. L., Edwards, C. S., Montgomery, D. R. & Brand, B. D. The dual nature of the martian crust: young lavas and old clastic materials. Icarus 222, 188–199 (2013)

    ADS  Article  Google Scholar 

  16. 16

    Lammer, H. et al. Outgassing history and escape of the Martian atmosphere and water inventory. Space Sci. Rev. 174, 113–154 (2012)

    ADS  Article  Google Scholar 

  17. 17

    Gaillard, F., Michalski, J., Berger, G., McLennan, S. M. & Scaillet, B. Geochemical reservoirs and timing of sulfur cycling on Mars. Space Sci. Rev. 174, 251–300 (2013)

    CAS  ADS  Article  Google Scholar 

  18. 18

    Halevy, I., Zuber, M. T. & Schrag, D. P. A sulfur dioxide climate feedback on early Mars. Science 318, 1903–1907 (2007)

    CAS  ADS  Article  Google Scholar 

  19. 19

    Tian, F. et al. Photochemical and climate consequences of sulfur outgassing on early Mars. Earth Planet. Sci. Lett. 295, 412–418 (2010)

    CAS  ADS  Article  Google Scholar 

  20. 20

    Johnson, S. S., Mischna, M. A., Grove, T. L. & Zuber, M. T. Sulfur-induced greenhouse warming on early Mars. J. Geophys. Res.. 113, E08005, http://dx.doi.org/10.1029/2007JE002962 (2008)

    ADS  Google Scholar 

  21. 21

    King, P. L. & McLennan, S. M. Sulfur on Mars. Elements 6, 107–112 (2010)

    CAS  Article  Google Scholar 

  22. 22

    French, B. M. Traces of Catastrophe: A Handbook of Shock-metamorphic Effects in Terrestrial Meteorite Impact Structures (LPI Contribution no. 954, Lunar and Planetary Institute, 1998)

    Google Scholar 

  23. 23

    Malin, M. & Dzurisin, D. Landform degradation on Mercury, the Moon, and Mars: evidence from crater depth/diameter relationships. J. Geophys. Res. 82, 376–388 (1977)

    ADS  Article  Google Scholar 

  24. 24

    Acocella, V. Caldera types: how end-members relate to evolutionary stages of collapse. Geophys. Res. Lett.. 33, L18314, http://dx.doi.org/10.1029/2006gl027434 (2006)

    ADS  Google Scholar 

  25. 25

    Richter, D. H., Eaton, J. P., Murata, K. J., Ault, W. U. & Krivoy, K. L. Chronological Narrative of the 1959–1960 Eruption of Kilauea Volcano, Hawaii (US Geological Survey Professional Paper 539-E, 1970)

    Google Scholar 

  26. 26

    Stovall, W. K., Houghton, B. F., Harris, A. J. L. & Swanson, D. A. Features of lava lake filling and draining and their implications for eruption dynamics. Bull. Volcanol. 71, 767–780 (2009)

    ADS  Article  Google Scholar 

  27. 27

    Walker, G. P. L. Structure and origin by injection of lava under surface crust of tumuli, ‘lava rises’, ‘lava-rise pits’, and ‘lava-inflation clefts’ in Hawaii. Bull. Volcanol. 53, 546–558 (1991)

    ADS  Article  Google Scholar 

  28. 28

    McGill, G. E. Crustal history of north central Arabia Terra, Mars. J. Geophys. Res. Planets 105, 6945–6959 (2000)

    ADS  Article  Google Scholar 

  29. 29

    Sharp, R. P. Mars: Fretted and chaotic terrains. J. Geophys. Res. 78, 4073–4083 (1973)

    ADS  Article  Google Scholar 

  30. 30

    Head, J. W., Mustard, J. F., Kreslavsky, M. A., Milliken, R. E. & Marchant, D. R. Recent ice ages on Mars. Nature 426, 797–802 (2003)

    CAS  ADS  Article  Google Scholar 

  31. 31

    Niu, F. J., Lin, Z. J., Liu, H. & Lu, J. H. Characteristics of thermokarst lakes and their influence on permafrost in Qinghai-Tibet Plateau. Geomorphology 132, 222–233 (2011)

    ADS  Article  Google Scholar 

  32. 32

    Bouchier, A. Response to Permafrost Failures on Hillslopes in the Brooks Range, Alaska. MS thesis, Colorado School of Mines. (2008)

  33. 33

    Soare, R. J., Osinki, G. R. & Roehm, C. L. Thermokarst lakes and ponds on Mars in the very recent (late Amazonian) past. Earth Planet. Sci. Lett. 272, 382–393 (2008)

    CAS  ADS  Article  Google Scholar 

  34. 34

    Sejourne, A. et al. Scalloped depressions and small-sized polygons in western Utopia Planitia, Mars: A new formation hypothesis. Planet. Space Sci. 59, 412–422 (2011)

    ADS  Article  Google Scholar 

  35. 35

    Miller, C. F. & Wark, D. A. Supervolcanoes and their explosive supereruptions. Elements 4, 11–15 (2008)

    Article  Google Scholar 

  36. 36

    Clifford, S. M. et al. Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater. J. Geophys. Res. Planets 115, E07001, http://dx.doi.org/10.1029/2009je003462 (2010)

    ADS  Article  Google Scholar 

  37. 37

    Robbins, S. J. & Hynek, B. M. A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters. J. Geophys. Res. 117, E05004 http://dx.doi.org/10.1029/2011je003966 (2012)

    ADS  Google Scholar 

  38. 38

    Sleep, N. Martian plate tectonics. J. Geophys. Res. 99, 5639–5655 (1994)

    ADS  Article  Google Scholar 

  39. 39

    Watters, T. R. Thrust faults along the dichotomy boundary in the eastern hemisphere of Mars. J. Geophys. Res. 108 (E6). 5054 (2003)

    Article  Google Scholar 

  40. 40

    Neumann, G. A. et al. Crustal structure of Mars from gravity and topography. J. Geophys. Res.. 109, E08002, http://dx.doi.org/10.1029/2004JE002262 (2004)

    ADS  Article  Google Scholar 

  41. 41

    Wilson, L. & Head, J. W. Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Rev. Geophys. 32, 221–263 (1994)

    ADS  Article  Google Scholar 

  42. 42

    Wilson, L., Scott, E. D. & Head, J. W. Evidence for episodicity in the magma supply to the large Tharsis volcanoes. J. Geophys. Res. 106 (E1). 1423–1433 (2001)

    ADS  Article  Google Scholar 

  43. 43

    Irwin, R. P., Watters, T. R., Howard, A. D. & Zimbelman, J. R. Sedimentary resurfacing and fretted terrain development along the crustal dichotomy boundary, Aeolis Mensae, Mars. J. Geophys. Res. Planets 109, E09011, http://dx.doi.org/10.1029/2004je002248 (2004)

    ADS  Google Scholar 

  44. 44

    Kerber, L., Michalski, J., Bleacher, J. & Forget, F. in 44th Lunar and Planetary Science Cconference, Lunar and Planetary Institute, Houston, Texas, USA,. abstract 2290 (2013)

  45. 45

    Hodges, C. A. & Moore, H. J. Atlas of Volcanic Landforms on Mars (US Geological Survey Professional Paper 1534, 1994)

    Google Scholar 

  46. 46

    Bleacher, J. E., Greeley, R., Williams, D. A., Cave, S. R. & Neukum, G. Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province. J. Geophys. Res. Planets 112, E09005, http://dx.doi.org/10.1029/2006je002873 (2007)

    ADS  Google Scholar 

  47. 47

    Hauber, E., Bleacher, J., Gwinner, K., Williams, D. & Greeley, R. The topography and morphology of low shields and associated landforms of plains volcanism in the Tharsis region of Mars. J. Volcanol. Geotherm. Res. 185, 69–95 (2009)

    CAS  ADS  Article  Google Scholar 

  48. 48

    Bleacher, J. E. et al. Spatial and alignment analyses for a field of small volcanic vents south of Pavonis Mons and implications for the Tharsis province, Mars. J. Volcanol. Geotherm. Res. 185, 96–102 (2009)

    CAS  ADS  Article  Google Scholar 

  49. 49

    Richardson, J. A., Bleacher, J. E. & Glaze, L. S. The volcanic history of Syria Planum, Mars. J. Volcanol. Geotherm. Res. 252, 1–13 (2013)

    CAS  ADS  Article  Google Scholar 

  50. 50

    Ehlmann, B. L. et al. Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 53–60 (2011)

    CAS  ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank H. Frey, B. Hynek, S. Wright, J. Zimbelman and L. Tornabene for discussions that improved the quality of the manuscript. Funding was provided by the NASA Mars Data Analysis programme.

Author information

Affiliations

Authors

Contributions

J.R.M. performed the initial observations, processed image and topographic data and wrote most of the manuscript. J.E.B. wrote portions of the manuscript, performed geological mapping and processed imaging and topographic data. Both authors synthesized the results, developed the ideas and edited the paper.

Corresponding author

Correspondence to Joseph R. Michalski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-4. (PDF 1063 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Michalski, J., Bleacher, J. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars. Nature 502, 47–52 (2013). https://doi.org/10.1038/nature12482

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing