Self-propagation of pathogenic protein aggregates in neurodegenerative diseases

Abstract

For several decades scientists have speculated that the key to understanding age-related neurodegenerative disorders may be found in the unusual biology of the prion diseases. Recently, owing largely to the advent of new disease models, this hypothesis has gained experimental momentum. In a remarkable variety of diseases, specific proteins have been found to misfold and aggregate into seeds that structurally corrupt like proteins, causing them to aggregate and form pathogenic assemblies ranging from small oligomers to large masses of amyloid. Proteinaceous seeds can therefore serve as self-propagating agents for the instigation and progression of disease. Alzheimer’s disease and other cerebral proteopathies seem to arise from the de novo misfolding and sustained corruption of endogenous proteins, whereas prion diseases can also be infectious in origin. However, the outcome in all cases is the functional compromise of the nervous system, because the aggregated proteins gain a toxic function and/or lose their normal function. As a unifying pathogenic principle, the prion paradigm suggests broadly relevant therapeutic directions for a large class of currently intractable diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Commonalities among age-related neurodegenerative diseases.

References

  1. 1

    Uversky, V. N. & Dunker, A. K. The case for intrinsically disordered proteins playing contributory roles in molecular recognition without a stable 3D structure. F1000 Biol. Rep. 5, 1 (2013)

    PubMed  PubMed Central  Google Scholar 

  2. 2

    Malinovska, L., Kroschwald, S. & Alberti, S. Protein disorder, prion propensities, and self-organizing macromolecular collectives. Biochim. Biophys. Acta 1834, 918–931 (2013)

    CAS  Google Scholar 

  3. 3

    Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science 319, 916–919 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011)

    CAS  Google Scholar 

  5. 5

    Thal, D. R., Rub, U., Orantes, M. & Braak, H. Phases of amyloid-β-deposition in the human brain and its relevance for the development of AD. Neurology 58, 1791–1800 (2002)

    Google Scholar 

  6. 6

    Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991)

    CAS  Google Scholar 

  7. 7

    Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003)

    Google Scholar 

  8. 8

    Brettschneider, J. et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann. Neurol. http://dx.doi.org/10.1002/ana.23937 (2013)

  9. 9

    Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998)

    ADS  CAS  Google Scholar 

  10. 10

    Collinge, J. Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24, 519–550 (2001)

    CAS  Google Scholar 

  11. 11

    Aguzzi, A. & Calella, A. M. Prions: protein aggregation and infectious diseases. Physiol. Rev. 89, 1105–1152 (2009)

    CAS  Google Scholar 

  12. 12

    Caughey, B., Baron, G. S., Chesebro, B. & Jeffrey, M. Getting a grip on prions: oligomers, amyloids, and pathological membrane interactions. Annu. Rev. Biochem. 78, 177–204 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Head, M. W. & Ironside, J. W. Review: Creutzfeldt–Jakob disease: prion protein type, disease phenotype and agent strain. Neuropathol. Appl. Neurobiol. 38, 296–310 (2012)

    CAS  Google Scholar 

  14. 14

    DeArmond, S. J. & Prusiner, S. B. Etiology and pathogenesis of prion diseases. Am. J. Pathol. 146, 785–811 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Wadsworth, J. D. & Collinge, J. Molecular pathology of human prion disease. Acta Neuropathol. 121, 69–77 (2011)

    CAS  Google Scholar 

  16. 16

    Tanaka, M., Collins, S. R., Toyama, B. H. & Weissman, J. S. The physical basis of how prion conformations determine strain phenotypes. Nature 442, 585–589 (2006)

    ADS  CAS  Google Scholar 

  17. 17

    Collinge, J. & Clarke, A. R. A general model of prion strains and their pathogenicity. Science 318, 930–936 (2007)

    ADS  CAS  Google Scholar 

  18. 18

    Colby, D. W. & Prusiner, S. B. Prions. Cold Spring Harb. Perspect. Biol. 3, a006833 (2011)

    PubMed  PubMed Central  Google Scholar 

  19. 19

    Silveira, J. R. et al. The most infectious prion protein particles. Nature 437, 257–261 (2005)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Sandberg, M. K., Al-Doujaily, H., Sharps, B., Clarke, A. R. & Collinge, J. Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 470, 540–542 (2011)

    ADS  CAS  Google Scholar 

  21. 21

    Jarrett, J. T. & Lansbury, P. T., Jr Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058 (1993)One of the first papers to suggest a common pathogenic mechanism between prion diseases and Alzheimer's disease based on in vitro protein aggregation studies.

    CAS  PubMed  Google Scholar 

  22. 22

    Sipe, J. D. et al. Amyloid fibril protein nomenclature: 2012 recommendations from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 19, 167–170 (2012)

    CAS  Google Scholar 

  23. 23

    Buxbaum, J. N. & Linke, R. P. A molecular history of the amyloidoses. J. Mol. Biol. 421, 142–159 (2012)

    CAS  Google Scholar 

  24. 24

    Blancas-Mejía, L. M. & Ramirez-Alvarado, M. Systemic amyloidoses. Annu. Rev. Biochem. 82, 745–774 (2013)

    PubMed  PubMed Central  Google Scholar 

  25. 25

    Dobson, C. M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332 (1999) An early paper suggesting that all proteins have the intrinsic potential to form amyloid under suitable conditions.

    CAS  Google Scholar 

  26. 26

    Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006)

    CAS  Google Scholar 

  27. 27

    Maji, S. K. et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325, 328–332 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Greenwald, J. & Riek, R. Biology of amyloid: structure, function, and regulation. Structure 18, 1244–1260 (2010)

    CAS  PubMed  Google Scholar 

  29. 29

    Hou, F. et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448–461 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Blanco, L. P., Evans, M. L., Smith, D. R., Badtke, M. P. & Chapman, M. R. Diversity, biogenesis and function of microbial amyloids. Trends Microbiol. 20, 66–73 (2012)

    CAS  Google Scholar 

  31. 31

    Wickner, R. B. et al. Amyloids and yeast prion biology. Biochemistry 52, 1514–1527 (2013)

    CAS  Google Scholar 

  32. 32

    Eisenberg, D. & Jucker, M. The amyloid state of proteins in human diseases. Cell 148, 1188–1203 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Mucke, L. & Selkoe, D. J. Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harbor Perspect. Med. 2, a006338 (2012)

  34. 34

    Tycko, R. & Wickner, R. B. Molecular structures of amyloid and prion fibrils: consensus versus controversy. Acc. Chem. Res. 46, 1487–1496 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Liu, C. et al. Out-of-register β-sheets suggest a pathway to toxic amyloid aggregates. Proc. Natl Acad. Sci. USA 109, 20913–20918 (2012)

    ADS  CAS  Google Scholar 

  36. 36

    Laganowsky, A. et al. Atomic view of a toxic amyloid small oligomer. Science 335, 1228–1231 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Jan, A. et al. Aβ42 neurotoxicity is mediated by ongoing nucleated polymerization process rather than by discrete Aβ42 species. J. Biol. Chem. 286, 8585–8596 (2011)

    CAS  Google Scholar 

  38. 38

    Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307, 262–265 (2005)This study demonstrates that the morphology and toxicity of synthetic β-amyloid fibrils are linked to variations in the molecular structure of the protein, and that these properties can be propagated to subsequent generations of fibrils in vitro by a seeding mechanism.

    ADS  CAS  Google Scholar 

  39. 39

    Toyama, B. H. & Weissman, J. S. Amyloid structure: conformational diversity and consequences. Annu. Rev. Biochem. 80, 557–585 (2011)

    CAS  Google Scholar 

  40. 40

    Westermark, G. T. & Westermark, P. Prion-like aggregates: infectious agents in human disease. Trends Mol. Med. 16, 501–507 (2010)An overview of the prion-like properties of systemic amyloids.

    CAS  Google Scholar 

  41. 41

    Yan, J. et al. Cross-seeding and cross-competition in mouse apolipoprotein A-II amyloid fibrils and protein A amyloid fibrils. Am. J. Pathol. 171, 172–180 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Xing, Y. et al. Transmission of mouse senile amyloidosis. Lab. Invest. 81, 493–499 (2001)

    CAS  Google Scholar 

  43. 43

    Zhang, B. et al. Fecal transmission of AA amyloidosis in the cheetah contributes to high incidence of disease. Proc. Natl Acad. Sci. USA 105, 7263–7268 (2008)

    ADS  CAS  Google Scholar 

  44. 44

    Korenaga, T. et al. Transmission of amyloidosis in offspring of mice with AApoAII amyloidosis. Am. J. Pathol. 168, 898–906 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    De Strooper, B. Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process. Physiol. Rev. 90, 465–494 (2010)

    CAS  Google Scholar 

  46. 46

    Holtzman, D. M., Morris, J. C. & Goate, A. M. Alzheimer's disease: the challenge of the second century. Sci. Transl. Med. 3, 77s71 (2011)

    Google Scholar 

  47. 47

    Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N. Engl. J. Med. 367, 795–804 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Villemagne, V. L. et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study. Lancet Neurol. 12, 357–367 (2013)

    CAS  Google Scholar 

  49. 49

    Baker, H. F., Ridley, R. M., Duchen, L. W., Crow, T. J. & Bruton, C. J. Evidence for the experimental transmission of cerebral β-amyloidosis to primates. Int. J. Exp. Pathol. 74, 441–454 (1993)Evidence that senile plaques in the brains of nonhuman primates are inducible by the intracerebral injection of Alzheimer's brain homogenates.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Jucker, M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nature Med. 16, 1210–1214 (2010)

    CAS  Google Scholar 

  51. 51

    Kane, M. D. et al. Evidence for seeding of β-amyloid by intracerebral infusion of Alzheimer brain extracts in β-amyloid precursor protein-transgenic mice. J. Neurosci. 20, 3606–3611 (2000)

    CAS  Google Scholar 

  52. 52

    Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006)The first conclusive demonstration that an aggregated form of Aβ is the β-amyloid-inducing agent in donor brain extracts, and that the transmission of cerebral β-amyloidosis is dependent on the nature of both the seed and the host.

    ADS  CAS  Google Scholar 

  53. 53

    Morales, R., Duran-Aniotz, C., Castilla, J., Estrada, L. D. & Soto, C. De novo induction of amyloid-β deposition in vivo. Mol. Psychiatry 17, 1347–1353 (2012)

    CAS  Google Scholar 

  54. 54

    Rosen, R. F. et al. Exogenous seeding of cerebral β-amyloid deposition in βAPP-transgenic rats. J. Neurochem. 120, 660–666 (2012)

    CAS  Google Scholar 

  55. 55

    Langer, F. et al. Soluble amyloid-β seeds are potent inducers of cerebral β-amyloid deposition. J. Neurosci. 31, 14488–14495 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Stöhr, J. et al. Purified and synthetic Alzheimer's amyloid beta (amyloid-β) prions. Proc. Natl Acad. Sci. USA 109, 11025–11030 (2012)Demonstration that Aβ deposition can be seeded in the brain by synthetic Aβ seeds.

    ADS  Google Scholar 

  57. 57

    Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676 (2004)

    ADS  CAS  Google Scholar 

  58. 58

    Wang, F., Wang, X., Yuan, C. G. & Ma, J. Generating a prion with bacterially expressed recombinant prion protein. Science 327, 1132–1135 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    LeVine III, H. & Walker, L. C. Molecular polymorphism of amyloid-β in Alzheimer's disease. Neurobiol. Aging 31, 542–548 (2010)

    Google Scholar 

  60. 60

    Heilbronner, G. et al. Seeded strain-like transmission of β-amyloid morphotypes in APP transgenic mice. EMBO Rep. http://dx.doi.org/10.1038/embor.2013.137 (3 September 2013)

  61. 61

    Jucker, M. & Walker, L. C. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann. Neurol. 70, 532–540 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Hamaguchi, T. et al. The presence of amyloid-β seeds, and not age per se, is critical to the initiation of amyloid-β deposition in the brain. Acta Neuropathol. 123, 31–37 (2012)

    CAS  Google Scholar 

  63. 63

    Eisele, Y. S. et al. Peripherally applied amyloid-β-containing inoculates induce cerebral β-amyloidosis. Science 330, 980–982 (2010)Demonstration that cerebral Aβ deposition can be induced by the introduction of Aβ seeds into the peritoneal cavity (a site outside the brain).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Lee, V. M., Goedert, M. & Trojanowski, J. Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24, 1121–1159 (2001)

    CAS  Google Scholar 

  65. 65

    Goldstein, L. E. et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Science Transl. Med. 4, 134ra160 (2012)

    Google Scholar 

  66. 66

    Clavaguera, F. et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nature Cell Biol. 11, 909–913 (2009)The first report that tau lesions can be instigated in tau-transgenic mice by the intracerebral infusion of brain extracts containing aggregated tau.

    CAS  Google Scholar 

  67. 67

    Lasagna-Reeves, C. A. et al. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Scientific Rep. 2, 700 (2012)

    Google Scholar 

  68. 68

    Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl Acad. Sci. USA 110, 9535–9540 (2013)

    ADS  CAS  Google Scholar 

  69. 69

    Guo, J. L. & Lee, V. M. Neurofibrillary tangle-like tau pathology induced by synthetic tau fibrils in primary neurons over-expressing mutant tau. FEBS Lett. 587, 717–723 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Iba, M. et al. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J. Neurosci. 33, 1024–1037 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Goedert, M., Spillantini, M. G., Del Tredici, K. & Braak, H. 100 years of Lewy pathology. Nature Rev. Neurology 9, 13–24 (2013)

    CAS  Google Scholar 

  72. 72

    Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B. & Olanow, C. W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nature Med. 14, 504–506 (2008)

    CAS  Google Scholar 

  73. 73

    Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nature Med. 14, 501–503 (2008)These two reports (refs 72, 73) suggest that endogenous α-synuclein seeds in the brains of humans with Parkinson's disease can induce the aggregation of α-synuclein in grafted neurons.

    ADS  CAS  Google Scholar 

  74. 74

    Hansen, C. et al. α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Invest. 121, 715–725 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Kordower, J. H. et al. Transfer of host-derived α synuclein to grafted dopaminergic neurons in rat. Neurobiol. Dis. 43, 552–557 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Volpicelli-Daley, L. A. et al. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc. Natl Acad. Sci. USA 106, 13010–13015 (2009)

    ADS  CAS  Google Scholar 

  78. 78

    Mougenot, A. L. et al. Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol. Aging 33, 2225–2228 (2012)

    CAS  Google Scholar 

  79. 79

    Luk, K. C. et al. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J. Exp. Med. 209, 975–986 (2012)These two studies (refs 78, 79) first showed that α-synuclein lesions can be induced in α-synuclein-transgenic mice by the intracerebral inoculation of brain extracts rich in aggregated α-synuclein.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Luk, K. C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012)Describes the instigation of α-synucleinopathy by the intracerebral injection of synthetic α-synuclein fibrils into non-transgenic mice.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Masuda-Suzukake, M. et al. Prion-like spreading of pathological α-synuclein in brain. Brain 136, 1178–1138 (2013)

    Google Scholar 

  82. 82

    Guo, J. L. et al. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154, 103–117 (2013)This study describes the strain-dependent induction of tau aggregation by aggregated α-synuclein in vitro and in vivo.

    CAS  Google Scholar 

  83. 83

    Van Langenhove, T., van der Zee, J. & Van Broeckhoven, C. The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. Ann. Med. 44, 817–828 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Rademakers, R., Neumann, M. & Mackenzie, I. R. Advances in understanding the molecular basis of frontotemporal dementia. Nature Rev. Neurol. 8, 423–434 (2012)

    CAS  Google Scholar 

  85. 85

    Cruts, M., Gijselinck, I., Van Langenhove, T., van der Zee, J. & Van Broeckhoven, C. Current insights into the C9orf72 repeat expansion diseases of the FTLD/ALS spectrum. Trends Neurosci. 36, 450–459 (2013)

    CAS  Google Scholar 

  86. 86

    Kim, H. J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    King, O. D., Gitler, A. D. & Shorter, J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res. 1462, 61–80 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Li, Y. R., King, O. D., Shorter, J. & Gitler, A. D. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 201, 361–372 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Olzscha, H. et al. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144, 67–78 (2011)

    CAS  Google Scholar 

  90. 90

    Furukawa, Y., Kaneko, K., Watanabe, S., Yamanaka, K. & Nukina, N. A seeding reaction recapitulates intracellular formation of Sarkosyl-insoluble transactivation response element (TAR) DNA-binding protein-43 inclusions. J. Biol. Chem. 286, 18664–18672 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Münch, C., O'Brien, J. & Bertolotti, A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc. Natl Acad. Sci. USA 108, 3548–3553 (2011)

    ADS  Google Scholar 

  92. 92

    Grad, L. I. et al. Intermolecular transmission of superoxide dismutase 1 misfolding in living cells. Proc. Natl Acad. Sci. USA 108, 16398–16403 (2011)

    ADS  CAS  Google Scholar 

  93. 93

    Polymenidou, M. & Cleveland, D. W. The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147, 498–508 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991)

    ADS  CAS  Google Scholar 

  95. 95

    Xu, J. et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nature Chem. Biol. 7, 285–295 (2011)

    CAS  Google Scholar 

  96. 96

    Ano Bom, A. P. et al. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J. Biol. Chem. 287, 28152–28162 (2012)These two studies (refs 95, 96) demonstrate the aggregation and prion-like characteristics of p53, a protein that normally regulates the cell-cycle and acts to inhibit tumour formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Sigurdson, C. J. & Aguzzi, A. Chronic wasting disease. Biochim. Biophys. Acta 1772, 610–618 (2007)

    CAS  Google Scholar 

  98. 98

    Hoinville, L. J. A review of the epidemiology of scrapie in sheep. Rev. Sci. Tech. 15, 827–852 (1996)

    CAS  Google Scholar 

  99. 99

    Collinge, J. et al. Kuru in the 21st century—an acquired human prion disease with very long incubation periods. Lancet 367, 2068–2074 (2006)

    Google Scholar 

  100. 100

    Brown, P. et al. Iatrogenic Creutzfeldt–Jakob disease, final assessment. Emerg. Infect. Dis. 18, 901–907 (2012)

    PubMed  PubMed Central  Google Scholar 

  101. 101

    Irwin, D. J. et al. Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol. 70, 462–468 (2013)

    PubMed  PubMed Central  Google Scholar 

  102. 102

    Johnson, S. M., Connelly, S., Fearns, C., Powers, E. T. & Kelly, J. W. The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J. Mol. Biol. 421, 185–203 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Sievers, S. A. et al. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 475, 96–100 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Saper, C. B., Wainer, B. H. & German, D. C. Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer's disease. Neuroscience 23, 389–398 (1987)

    CAS  Google Scholar 

  105. 105

    Ravits, J. M. & La Spada, A. R. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73, 805–811 (2009)

    PubMed  PubMed Central  Google Scholar 

  106. 106

    Eidelberg, D. & Surmeier, D. J. Brain networks in Huntington disease. J. Clin. Invest. 121, 484–492 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Zhou, J., Gennatas, E. D., Kramer, J. H., Miller, B. L. & Seeley, W. W. Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73, 1216–1227 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Raj, A., Kuceyeski, A. & Weiner, M. A network diffusion model of disease progression in dementia. Neuron 73, 1204–1215 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Gardner, R. C. et al. Intrinsic connectivity network disruption in progressive supranuclear palsy. Ann. Neurol. 73, 603–616 (2013)

    PubMed  PubMed Central  Google Scholar 

  110. 110

    Bero, A. W. et al. Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nature Neurosci. 14, 750–756 (2011)

    CAS  Google Scholar 

  111. 111

    Dolev, I. et al. Spike bursts increase amyloid-β 40/42 ratio by inducing a presenilin-1 conformational change. Nature Neurosci. 16, 587–595 (2013)

    CAS  Google Scholar 

  112. 112

    Pooler, A. M., Phillips, E. C., Lau, D. H., Noble, W. & Hanger, D. P. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep. 14, 389–394 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Bae, E. J. et al. Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission. J. Neurosci. 32, 13454–13469 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Polymenidou, M. & Cleveland, D. W. Prion-like spread of protein aggregates in neurodegeneration. J. Exp. Med. 209, 889–893 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Holmes, B. B. & Diamond, M. I. Cellular mechanisms of protein aggregate propagation. Curr. Opin. Neurol. 25, 721–726 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Wu, J. W. et al. Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J. Biol. Chem. 288, 1856–1870 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Aguzzi, A. & Rajendran, L. The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64, 1856–790 (2009)

    Google Scholar 

  118. 118

    Nath, S. et al. Spreading of neurodegenerative pathology via neuron-to-neuron transmission of β-amyloid. J. Neurosci. 32, 8767–8777 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Kfoury, N., Holmes, B. B., Jiang, H., Holtzman, D. M. & Diamond, M. I. Trans-cellular propagation of Tau aggregation by fibrillar species. J. Biol. Chem. 287, 19440–19451 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Freundt, E. C. et al. Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport. Ann. Neurol. 72, 517–524 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Ren, P. H. et al. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nature Cell Biol. 11, 219–225 (2009)

    CAS  Google Scholar 

  122. 122

    Selkoe, D. J. Resolving controversies on the path to Alzheimer's therapeutics. Nature Med. 17, 1060–1065 (2011)

    CAS  Google Scholar 

  123. 123

    Gajdusek, D. C. Spontaneous generation of infectious nucleating amyloids in the transmissible and nontransmissible cerebral amyloidoses. Mol. Neurobiol. 8, 1–13 (1994)

    CAS  Google Scholar 

  124. 124

    Lee, J., Culyba, E. K., Powers, E. T. & Kelly, J. W. Amyloid-β forms fibrils by nucleated conformational conversion of oligomers. Nature Chem. Biol. 7, 602–609 (2011)

    CAS  Google Scholar 

  125. 125

    Knowles, T. P. & Buehler, M. J. Nanomechanics of functional and pathological amyloid materials. Nature Nanotechnol. 6, 469–479 (2011)

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Eisenberg, H. LeVine, A. Aguzzi, J. Collinge, R. Rosen, Y. Eisele, A. Mehta, M. Gearing, J. Manson, M. Neumann, and the members of our laboratories for critical discussions and comments. The help of H. Braak with Fig. 1, and the help of S. Eberle with the manuscript and figures is gratefully acknowledged. This work was supported by grants from the Competence Network on Degenerative Dementias (BMBF-01GI0705), ALZKULT (BMBF-031A198A), NGFN2 (BMBF-01GS08131), and anonymous foundations (to M.J.), and by National Institutes of Health grants R21AG040589, P51RR165, P51OD11132, and the CART Foundation (to L.C.W.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Affiliations

Authors

Contributions

M.J. and L.C.W. contributed to the writing of the review

Corresponding authors

Correspondence to Mathias Jucker or Lary C. Walker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jucker, M., Walker, L. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013). https://doi.org/10.1038/nature12481

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.