Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Heat-pipe Earth

Abstract

The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Snapshots of the temperature field for two-dimensional models of mantle convection.
Figure 2: Temperature as a function of depth in lithosphere.
Figure 3: Heat flow contributions and dimensionless maximum lithospheric stress as functions of the dimensionless internal heating rate (αHD2/k).
Figure 4: Internal heat production, surface conductive heat transport and surface volcanic heat transport as functions of time in a model with a finite yield stress.

Similar content being viewed by others

References

  1. Turcotte, D. L. & Schubert, G. Geodynamics 1–17, 2nd edn (Cambridge Univ. Press, 2002)

    Book  Google Scholar 

  2. McGovern, P. J. et al. Correction to “Localized gravity/topography admittance and correlation spectra on Mars: implications for regional and global evolution”. J. Geophys. Res. 109, E07007 (2004)

    ADS  Google Scholar 

  3. Warren, P. H. & Rasmussen, K. L. Megaregolith insulation, internal temperatures, and bulk Uranium content of the Moon. J. Geophys. Res. 92, 3453–3465 (1987)

    Article  ADS  CAS  Google Scholar 

  4. Franck, S. Evolution of the global mean heat flow over 4.6 Gyr. Tectonophysics. 291, 9–18 (1998)

    Article  ADS  Google Scholar 

  5. Davies, G. F. Gravitational depletion of the early Earth’s upper mantle and the viability of early plate tectonics. Earth Planet. Sci. Lett. 243, 376–382 (2006)

    Article  ADS  CAS  Google Scholar 

  6. Korenaga, J. Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth. J. Geophys. Res. Solid Earth. 116, B12403 (2011)

    Article  ADS  Google Scholar 

  7. O’Neill, C. J., Lenardic, A., Moresi, L., Torsvik, T. H. & Lee, C.-T. A. Episodic pre-Cambrian subduction. Earth Planet. Sci. Lett. 262, 552–562 (2007)

    Article  ADS  Google Scholar 

  8. van Hunen, J. & van den Berg, A. P. Plate tectonics on the early Earth: limitations imposed by strength and buoyancy of subducted lithosphere. Lithos. 103, 217–235 (2008)

    Article  ADS  CAS  Google Scholar 

  9. van Hunen, J. & Moyen, J.-F. Archean subduction: fact or fiction? Annu. Rev. Earth Planet. Sci. 40, 195–219 (2012)

    Article  ADS  CAS  Google Scholar 

  10. Nutman, A. P., Friend, C. R. L., Horie, K. & Hikada, H. in Earth’s Oldest Rocks (eds Van Kranendonk, M. J., Smithies, R. H. & Bennett, V. C. ) 187–218 (Elsevier, 2007)

    Book  Google Scholar 

  11. Moyen, J.-F. The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos. 123, 21–36 (2011)

    Article  ADS  CAS  Google Scholar 

  12. Guitreau, M., Blichert-Toft, J., Martin, H., Mojszis, S. J. & Albarede, F. Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust. Earth Planet. Sci. Lett. 337–338, 211–223 (2012)

    Article  ADS  Google Scholar 

  13. Veeder, G. J., Matson, G. J., Johnson, T. V., Davies, A. G. & Blaney, D. L. The polar contribution to the heat flow of Io. Icarus. 169, 264–270 (2004)

    Article  ADS  Google Scholar 

  14. O’Reilly, T. C. & Davies, G. F. Magma transport of heat on Io: a mechanism allowing a thick lithosphere. Geophys. Res. Lett. 8, 313–316 (1981)

    Article  ADS  Google Scholar 

  15. Breuer, D. & Moore, W. B. in Treatise on Geophysics Vol. 10 (ed. Schubert, G. ) 299–341 (Elsevier, 2007)

    Book  Google Scholar 

  16. Tackley, P. J. Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid. Phys. Earth Planet. Inter. 171, 7–18 (2008)

    Article  ADS  Google Scholar 

  17. Takahashi, E. Melting of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. J. Geophys. Res. 91, 9367–9385 (1986)

    Article  ADS  CAS  Google Scholar 

  18. Schenk, P. M. & Bulmer, M. H. Origin of mountains on Io by thrust faulting and large-scale mass movements. Science. 279, 1514–1517 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A change in the geodynamics of continental growth 3 billion years ago. Science. 335, 1334–1336 (2012)

    Article  ADS  CAS  Google Scholar 

  20. Shirey, S. B. & Richardson, S. H. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science. 333, 434–436 (2011)

    Article  ADS  CAS  Google Scholar 

  21. Pease, V., Percival, J., Smithies, R. H., Stevens, G. & Van Kranendonk, M. in When Did Plate Tectonics Begin On Planet Earth? (eds Condie, K. C. & Pease, V. ) 199–228 (The Geological Society of America, 2008)

    Book  Google Scholar 

  22. Lowe, D. R. & Byerly, G. R. in Earth’s Oldest Rocks (eds Van Kranendonk, M. J., Smithies, R. H. & Bennett, V. C. ) 481–526 (Elsevier, 2007)

    Book  Google Scholar 

  23. Van Kranendonk, M. J., Smithies, R. H., Hickman, A. H. & Champion, D. C. in Earth’s Oldest Rocks (eds Van Kranendonk, M. J., Smithies, R. H. & Bennett, V. C. ) 307–337 (Elsevier, 2007)

    Book  Google Scholar 

  24. Stiegler, M. T., Lowe, D. R. & Byerly, G. R. Fragmentation and dispersal of komatiitic pyroclasts in the 3.5–3.2 Ga Onverwacht Group, Barberton greenstone belt, South Africa. Geol. Soc. Am. Bull. 123, 1112–1126 (2011)

    Article  ADS  CAS  Google Scholar 

  25. Hickman, A. H. & Van Kranendonk, M. J. in The Precambrian Earth: Tempos and Events (eds Eriksson, P. G., Altermann, W., Nelson, D. R., Meuller, W. U. & Catuneanu, O. ) 54–75 (Elsevier, 2004)

    Google Scholar 

  26. Moyen, J.-F., Stevens, G., Kisters, A. F. M. & Belcher, R. W. in Earth’s Oldest Rocks (eds Van Kranendonk, M. J., Smithies, R. H. & Bennett, V. C. ) 607–667 (Elsevier, 2007)

    Book  Google Scholar 

  27. Van Kranendonk, M. J. Cool greenstone drips and the role of partial convective overturn in Barberton greenstone belt evolution. J. Afr. Earth Sci. 60, 346–352 (2011)

    Article  ADS  Google Scholar 

  28. Zegers, T. E., Wijbrans, J. R. & White, S. H. 40Ar/39Ar age constraints on tectonothermal events in the Shaw area of the eastern Pilbara granite-greenstone terrain (W. Australia): 700 Ma of Archaean tectonic evolution. Tectonophysics. 311, 45–81 (1999)

    Article  ADS  CAS  Google Scholar 

  29. Bowring, S. A. & Williams, I. S. Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib. Mineral. Petrol. 134, 3–16 (1999)

    Article  ADS  CAS  Google Scholar 

  30. Friend, C. R. L. & Nutman, A. P. Complex 3670–3500 Ma orogenic episodes superimposed on juvenile crust accreted between 3850–3690 Ma, Itsaq Gneiss Complex, southern West Greenland. J. Geol. 113, 375–397 (2005)

    Article  ADS  Google Scholar 

  31. Friend, C. R. L., Bennett, V. C. & Nutman, A. P. Abyssal peridotites >3,800 Ma from southern West Greenland: field relationships, petrology, geochronology, whole-rock and mineral chemistry of dunite and harzburgite inclusions in the Itsaq Gneiss Complex. Contrib. Mineral. Petrol. 143, 71–92 (2002)

    Article  ADS  CAS  Google Scholar 

  32. Hoffmann, J. E. et al. Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs. Geochim. Cosmochim. Acta. 75, 4157–4178 (2011)

    Article  ADS  CAS  Google Scholar 

  33. Kamber, B. S., Whitehouse, M. J., Bolhar, R. & Moorbath, S. Volcanic resurfacing and the early terrestrial crust: zircon U-Pb and REE constraints from the Isua Greenstone Belt, southern West Greenland. Earth Planet. Sci. Lett. 240, 276–290 (2005)

    Article  ADS  CAS  Google Scholar 

  34. Mojzsis, S. J., Harrison, T. M. & Pidgeon, R. T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature. 409, 178–181 (2001)

    Article  ADS  CAS  Google Scholar 

  35. Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature. 409, 175–178 (2001)

    Article  ADS  CAS  Google Scholar 

  36. Blichert-Toft, J. & Alberède, F. Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. Earth Planet. Sci. Lett. 265, 686–702 (2008)

    Article  ADS  CAS  Google Scholar 

  37. Menneken, M., Nemchin, A. A., Geisler, T., Pidgeon, R. T. & Wilde, S. A. Hadean diamonds in zircon from Jack Hills, Western Australia. Nature. 448, 917–920 (2007)

    Article  ADS  CAS  Google Scholar 

  38. Nemchin, A. A. et al. A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills. Nature. 454, 92–95 (2008)

    Article  ADS  CAS  Google Scholar 

  39. Bundy, F. P. Pressure-temperature phase-diagram of elemental carbon. Physica A. 156, 169–178 (1989)

    Article  ADS  CAS  Google Scholar 

  40. Stern, R. J. Modern-style plate tectonics began in Neoproterozoic time: an alternative interpretation of Earth’s tectonic history. Spec. Pap. Geol. Soc. Am. 440, 265–280 (2008)

    Google Scholar 

  41. Harrison, T. M. The Hadean crust: evidence from >4 Ga zircons. Annu. Rev. Earth Planet. Sci. 37, 479–505 (2009)

    Article  ADS  CAS  Google Scholar 

  42. Bédard, J. H., Harris, L. B. & Thurston, P. C. The hunting of the snArc. Precambr. Res. 229, 20–48 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research has been supported by NSF Geophysics, NASA PG&G, the NASA Astrobiology Institute and a start-up fund from Louisiana State University, and has made use of the Astrophysics Data System. We thank M. Stiegler for discussions.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the writing of this paper. W.B.M. performed the numerical modelling and A.A.G.W. provided the review of the geologic literature.

Corresponding author

Correspondence to William B. Moore.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, W., Webb, A. Heat-pipe Earth. Nature 501, 501–505 (2013). https://doi.org/10.1038/nature12473

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12473

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing