Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A visual motion detection circuit suggested by Drosophila connectomics


Animal behaviour arises from computations in neuronal circuits, but our understanding of these computations has been frustrated by the lack of detailed synaptic connection maps, or connectomes. For example, despite intensive investigations over half a century, the neuronal implementation of local motion detection in the insect visual system remains elusive. Here we develop a semi-automated pipeline using electron microscopy to reconstruct a connectome, containing 379 neurons and 8,637 chemical synaptic contacts, within the Drosophila optic medulla. By matching reconstructed neurons to examples from light microscopy, we assigned neurons to cell types and assembled a connectome of the repeating module of the medulla. Within this module, we identified cell types constituting a motion detection circuit, and showed that the connections onto individual motion-sensitive neurons in this circuit were consistent with their direction selectivity. Our results identify cellular targets for future functional investigations, and demonstrate that connectomes can provide key insights into neuronal computations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Motion detection and the Drosophila visual system.
Figure 2: Connectome reconstruction using serial-section electron microscopy.
Figure 3: Medulla connectome module.
Figure 4: Spatial displacement of Mi1- and Tm3-mediated inputs onto a single T4 cell (T4-12).
Figure 5: Computed displacements for all T4 cells.
Figure 6: Orientation of medulla dendritic arbors of T4 neurons correlates with axon terminal arborization layer in the lobula plate.


  1. 1

    Heisenberg, M. & Wolf, R. Vision in Drosophila. Genetics of Microbehaviour (Springer Verlag, 1984)

    Google Scholar 

  2. 2

    Laughlin, S. B. Matching coding, circuits, cells, and molecules to signals: General principles of retinal design in the fly’s eye. Prog. Retin. Eye Res. 13, 165–196 (1994)

    CAS  Google Scholar 

  3. 3

    Strausfeld, N. J. & Nässel, D. R. in Handbook of Sensory Physiology (eds Autrum, H. et al.) 1–132 (Springer-Verlag, 1981)

    Google Scholar 

  4. 4

    Hassenstein, B. & Reichardt, W. Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z. Naturforsch. B 11, 513–524 (1956)

    Google Scholar 

  5. 5

    Reichardt, W. in Sensory Communication (ed. Rosenblith, W. A. ) 303–317 (MIT Press, 1961)

    Google Scholar 

  6. 6

    Barlow, H. B. & Levick, W. R. The mechanism of directionally selective units in rabbit's retina. J. Physiol. (Lond.) 178, 477–504 (1965)

    CAS  Google Scholar 

  7. 7

    Borst, A., Haag, J. & Reiff, D. F. Fly motion vision. Annu. Rev. Neurosci. 33, 49–70 (2010)

    CAS  PubMed  Google Scholar 

  8. 8

    Rivera-Alba, M. et al. Wiring economy and volume exclusion determine neuronal placement in the Drosophila brain. Curr. Biol. 21, 2000–2005 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Meinertzhagen, I. A. & Sorra, K. E. Synaptic organization in the fly’s optic lamina: few cells, many synapses and divergent microcircuits. Prog. Brain Res. 131, 53–69 (2001)

    CAS  PubMed  Google Scholar 

  10. 10

    Takemura, S. Y., Lu, Z. & Meinertzhagen, I. A. Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J. Comp. Neurol. 509, 493–513 (2008)

    PubMed  PubMed Central  Google Scholar 

  11. 11

    Buchner, E., Buchner, S. & Bülthoff, I. Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement. J. Comp. Physiol. A 155, 471–483 (1984)

    Google Scholar 

  12. 12

    Krapp, H. G. & Hengstenberg, R. Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384, 463–466 (1996)

    ADS  CAS  PubMed  Google Scholar 

  13. 13

    Joesch, M., Plett, J., Borst, A. & Reiff, D. F. Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr. Biol. 18, 368–374 (2008)

    CAS  PubMed  Google Scholar 

  14. 14

    White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986)

    ADS  CAS  Google Scholar 

  15. 15

    Kirschfeld, K. in Information Processing in the Visual System of Arthropods (ed. Wehner, R. ) 61–74 (Springer Verlag, 1972)

    Google Scholar 

  16. 16

    Riehle, A. & Franceschini, N. Motion detection in flies: parametric control over ON–OFF pathways. Exp. Brain Res. 54, 390–394 (1984)

    CAS  PubMed  Google Scholar 

  17. 17

    Schuling, F. H., Mastebroek, H. A. K., Bult, R. & Lenting, B. P. M. Properties of elementary movement detectors in the fly Calliphora erythrocephala. J. Comp. Physiol. A 165, 179–192 (1989)

    Google Scholar 

  18. 18

    Helmstaedter, M., Briggman, K. L. & Denk, W. 3D structural imaging of the brain with photons and electrons. Curr. Opin. Neurobiol. 18, 633–641 (2008)

    CAS  PubMed  Google Scholar 

  19. 19

    Chklovskii, D. B., Vitaladevuni, S. & Scheffer, L. K. Semi-automated reconstruction of neural circuits using electron microscopy. Curr. Opin. Neurobiol. 20, 667–675 (2010)

    CAS  PubMed  Google Scholar 

  20. 20

    Fischbach, K.-F. & Dittrich, A. P. M. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res. 258, 441–475 (1989)

    Google Scholar 

  21. 21

    Song, S., Sjöström, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68 (2005)

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Varshney, L. R., Chen, B. L., Paniagua, E., Hall, D. H. & Chklovskii, D. B. Structural properties of the Caenorhabditis elegans neuronal network. PLOS Comput. Biol. 7, e1001066 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Campos-Ortega, J. A. & Strausfeld, N. J. in Information Processing in the Visual Systems of Arthropods (ed. Wehner, R. ) 31–36 (Springer Verlag, 1972)

    Google Scholar 

  24. 24

    Franceschini, N., Kirschfeld, K. & Minke, B. Fluorescence of photoreceptor cells observed in vivo. Science 213, 1264–1267 (1981)

    ADS  CAS  PubMed  Google Scholar 

  25. 25

    Douglass, J. K. & Strausfeld, N. J. Anatomical organization of retinotopic motion—sensitive pathways in the optic lobes of flies. Microsc. Res. Tech. 62, 132–150 (2003)

    PubMed  Google Scholar 

  26. 26

    Bausenwein, B., Dittrich, A. P. & Fischbach, K. F. The optic lobe of Drosophila melanogaster. II. Sorting of retinotopic pathways in the medulla. Cell Tissue Res. 267, 17–28 (1992)

    CAS  PubMed  Google Scholar 

  27. 27

    Bausenwein, B. & Fischbach, K. F. Activity labeling patterns in the medulla of Drosophila melanogaster caused by motion stimuli. Cell Tissue Res. 270, 25–35 (1992)

    CAS  PubMed  Google Scholar 

  28. 28

    Strausfeld, N. J. & Lee, J. K. Neuronal basis for parallel visual processing in the fly. Vis. Neurosci. 7, 13–33 (1991)

    CAS  PubMed  Google Scholar 

  29. 29

    Clark, D. A., Bursztyn, L., Horowitz, M. A., Schnitzer, M. J. & Clandinin, T. R. Defining the computational structure of the motion detector in Drosophila. Neuron 70, 1165–1177 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Joesch, M., Schnell, B., Raghu, S. V., Reiff, D. F. & Borst, A. ON and OFF pathways in Drosophila motion vision. Nature 468, 300–304 (2010)

    ADS  CAS  PubMed  Google Scholar 

  31. 31

    Rister, J. et al. Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster. Neuron 56, 155–170 (2007)

    CAS  PubMed  Google Scholar 

  32. 32

    Schnell, B., Raghu, S. V., Nern, A. & Borst, A. Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila. J. Comp. Physiol. A 198, 389–395 (2012)

    Google Scholar 

  33. 33

    Tuthill, J. C., Nern, A., Rubin, G. M. & Reiser, M. B. Contributions of the 12 neuron classes in the fly lamina to motion vision. Neuron 79, 128–140 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Douglass, J. K. & Strausfeld, N. J. Visual motion-detection circuits in flies: parallel direction-and non-direction-sensitive pathways between the medulla and lobula plate. J. Neurosci. 16, 4551–4562 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Maisak, M. S. et al. A directional tuning map of Drosophila elementary motion detectors. Nature (this issue)

  36. 36

    Srinivasan, M. & Dvorak, D. Spatial processing of visual information in the movement-detecting pathway of the fly. J. Comp. Physiol. A 140, 1–23 (1980)

    Google Scholar 

  37. 37

    Haag, J. & Borst, A. Recurrent network interactions underlying flow-field selectivity of visual interneurons. J. Neurosci. 21, 5685–5692 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Gouwens, N. W. & Wilson, R. I. Signal propagation in Drosophila central neurons. J. Neurosci. 29, 6239–6249 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Ashmore, J. F. & Copenhagen, D. R. Different postsynaptic events in two types of retinal bipolar cell. Nature 288, 84–86 (1980)

    ADS  CAS  PubMed  Google Scholar 

  40. 40

    Mizunami, M. Synaptic rectification model equivalent to the correlation-type movement detector. Biol. Cybern. 64, 1–6 (1990)

    CAS  PubMed  Google Scholar 

  41. 41

    Oyster, C. W. & Barlow, H. B. Direction-selective units in rabbit retina: distribution of preferred directions. Science 155, 841–842 (1967)

    ADS  CAS  PubMed  Google Scholar 

  42. 42

    Kim, I.-J., Zhang, Y., Yamagata, M., Meister, M. & Sanes, J. R. Molecular identification of a retinal cell type that responds to upward motion. Nature 452, 478–482 (2008)

    ADS  CAS  PubMed  Google Scholar 

  43. 43

    Euler, T., Detwiler, P. B. & Denk, W. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845–852 (2002)

    ADS  CAS  PubMed  Google Scholar 

  44. 44

    Briggman, K. L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011)

    ADS  CAS  PubMed  Google Scholar 

  45. 45

    Meinertzhagen, I. & Hanson, T. in The Development of Drosophila Melanogaster Vol. 2 (eds Bate, M. & Martinez Arias, A. ) 1363–1491 (Cold Spring Harbor Laboratory Press, 1993)

    Google Scholar 

  46. 46

    Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008 (2008)

    MATH  Google Scholar 

  47. 47

    Eck, N. & Waltman, L. VOS: a new method for visualizing similarities between objects. Adv. Data Anal. 299–306 (2007)

  48. 48

    Cardona, A. et al. TrakEM2 software for neural circuit reconstruction. PLoS ONE 7, e38011 (2012)

    ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Scheffer, L., Karsh, B. & Vitaladevuni, S. Automated alignment of imperfect EM images for neural reconstruction. Preprint at (2013)

  50. 50

    Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679–698 (1986)

    Google Scholar 

  51. 51

    Martin, D. R., Fowlkes, C. C. & Malik, J. Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26, 530–549 (2004)

    PubMed  Google Scholar 

  52. 52

    Soille, P. Morphological Image Analysis: Principles and Applications 2nd edn, 316 (Springer-Verlag New York, 2003)

    MATH  Google Scholar 

  53. 53

    Dollar, P., Tu, Z. & Belongie, S. Supervised learning of edges and object boundaries. IEEE Comp. Soc. Conf. Comp. Vis. Pattern Rec. 2, 1964–1971 (2006)

    Google Scholar 

  54. 54

    Vitaladevuni, S., Mishchenko, Y., Genkin, A., Chklovskii, D. C. & Harris, K. M. Mitochondria detection in electron microscopy images. Workshop Microscopic Image Anal. Appl. Biol.. (2008)

  55. 55

    Vincent, L. & Soille, P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13, 583–598 (1991)

    Google Scholar 

  56. 56

    Mohanta, P. P., Mukherjee, D. P. & Acton, S. T. Agglomerative clustering for image segmentation. Int. Conf. Pattern Rec. 1, 664–667 (2002)

    Google Scholar 

  57. 57

    Vitaladevuni, S. N. & Basri, R. Co-clustering of image segments using convex optimization applied to EM neuronal reconstruction. IEEE Comp. Soc. Conf. Comp. Vis. Patt. Rec.. 2203–2210 (2010)

  58. 58

    Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N. & Nakahara, H. Structure–stability–function relationships of dendritic spines. Trends Neurosci. 26, 360–368 (2003)

    CAS  PubMed  Google Scholar 

  59. 59

    Sato, M., Bitter, I., Bender, M. A., Kaufman, A. E. & Nakajima, M. TEASAR: Tree-structure extraction algorithm for accurate and robust skeletons. Eighth Pac. Conf. Comp. Graphics Appl.. 281–287, 449 (2000)

Download references


We acknowledge the technical support of all members of the Janelia FlyEM project and the Chklovskii group, past and present. We thank S. Laughlin for numerous discussions, and M. Reiser and N. Verma for commenting on the manuscript. We thank A. Borst, C. Desplan, C.-H. Lee, T. Clandinin and L. Zipursky for discussions and granting us access to their data before publication.

Author information




D.B.C. and I.A.M. designed the research. Z.L., Sh.T. and R.D.F. prepared and imaged the sample. D.J.O., P.W., S.M.P., S.V. and W.T.K., under the guidance of D.B.C. and L.K.S., developed software for the reconstruction. Sh.T. annotated the micrographs, proofread the segmentation, and assembled the connectome, with the help of other proofreaders (Sa.T. K.B., L.-A.C., O.O., M.A.S., V.S. and C.S.), supervised by P.K.R. and J.A.H. A.N. and G.M.R. provided and A.N. analysed light microscopy images. L.K.S. and A.B. performed data analysis and T.Z. aided in visualization. A.B. and D.B.C. studied the motion detection circuit. A.B., D.B.C., I.A.M. and L.K.S. wrote the paper, with contributions from Sh.T. and A.N.

Corresponding authors

Correspondence to Ian A. Meinertzhagen or Dmitri B. Chklovskii.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-6, Supplementary Methods, Supplementary Tables 1-3, a full legend to accompany the Supplementary Data file, the full video legend and Supplementary References. (PDF 6359 kb)

Supplementary Figure

This file contains the full version of Supplementary Figure 1 (see Supplementary Information file p.1 for full legend). (PDF 8306 kb)

Supplementary Table 1

This file contains the full version of Supplementary Table 1 (see Supplementary Information file p.16 for legend). (XLS 5614 kb)

Supplementary Data

This zipped file contains Supplementary Data 1 – see Supplementary Information file p.23 for legend). (ZIP 18850 kb)

Neuron reconstructions

This video shows the EM image stack of the medulla region of interest (Fig. 1c). Images from the stack are progressively removed (directed towards the deeper strata), and reconstructions of 379 neurons are added in succession, in randomly selected colors. The neurons are grouped into six classes, with text describing the class being added simultaneously with the neurons from each class: (1) Photoreceptor terminals, from the retina, and neurons from the lamina that innervate the reference column within the medulla. (2) Neurons receiving direct input from the retina and lamina neurons. (3) Neurons receiving direct input from the neurons in class (2). (4) Neurons that arborize in the reference column, but spread across multiple columns. (5) Tangential neurons, of which often only a fragment passing through the region of interest has been reconstructed. (6) Additional neurons, often of the same class as neurons in classes (1) – (5), but from adjacent columns. (MP4 29558 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Takemura, Sy., Bharioke, A., Lu, Z. et al. A visual motion detection circuit suggested by Drosophila connectomics. Nature 500, 175–181 (2013).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing