Late Miocene threshold response of marine algae to carbon dioxide limitation

Abstract

Coccolithophores are marine algae that use carbon for calcification and photosynthesis. The long-term adaptation of these and other marine algae to decreasing carbon dioxide levels during the Cenozoic era1 has resulted in modern algae capable of actively enhancing carbon dioxide at the site of photosynthesis. This enhancement occurs through the transport of dissolved bicarbonate (HCO3) and with the help of enzymes whose expression can be modulated by variable aqueous carbon dioxide concentration, [CO2], in laboratory cultures2,3. Coccolithophores preserve the geological history of this adaptation because the stable carbon and oxygen isotopic compositions of their calcite plates (coccoliths), which are preserved in the fossil record, are sensitive to active carbon uptake and transport by the cell. Here we use a model of cellular carbon fluxes and show that at low [CO2] the increased demand for HCO3 at the site of photosynthesis results in a diminished allocation of HCO3 to calcification, which is most pronounced in larger cells. This results in a large divergence between the carbon isotopic compositions of small versus large coccoliths only at low [CO2]. Our evaluation of the oxygen and carbon isotope record of size-separated fossil coccoliths reveals that this isotopic divergence first arose during the late Miocene to the earliest Pliocene epoch (about 7–5 million years ago). We interpret this to be a threshold response of the cells’ carbon acquisition strategies to decreasing [CO2]. The documented coccolithophore response is synchronous with a global shift in terrestrial vegetation distribution between 8 and 5 Myr ago, which has been interpreted by some studies as a floral response to decreasing partial pressures of carbon dioxide () in the atmosphere4,5,6. We infer a global decrease in carbon dioxide levels for this time interval that has not yet been identified in the sparse proxy record7 but is synchronous with global cooling and progressive glaciations8,9.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: HCO3 allocation to the chloroplast and coccolith vesicle inferred from εcoccolith measured in culture.
Figure 2: Divergence of vital effects in coccoliths.
Figure 3: Evolution of vital effects in coccoliths, C4 photosynthesis and 16 Myr ago.

References

  1. 1

    Tortell, P. D. Evolutionary and ecological perspectives on carbon acquisition in phytoplankton. Limnol. Oceanogr. 45, 744–750 (2000)

    CAS  ADS  Article  Google Scholar 

  2. 2

    Raven, J. A., Giordano, M., Beardall, J. & Maberly, S. C. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynth. Res. 109, 281–296 (2011)

    CAS  Article  Google Scholar 

  3. 3

    Reinfelder, J. R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu. Rev. Mar. Sci. 3, 291–315 (2011)

    ADS  Article  Google Scholar 

  4. 4

    Cerling, T. E. et al. Global vegetation change through the Miocene–Pliocene boundary. Nature 389, 153–158 (1997)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285–299 (1997)

    ADS  Article  Google Scholar 

  6. 6

    Zhang, C. et al. C4 expansion in central Inner Mongolia during the latest Miocene and early Pliocene. Earth Planet. Sci. Lett. 287, 311–319 (2009)

    CAS  ADS  Article  Google Scholar 

  7. 7

    Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nat. Geosci. 4, 418–420 (2011)

    CAS  ADS  Article  Google Scholar 

  8. 8

    van de Wal, R. S., de Boer, B., Lourens, L. J., Köhler, P. & Bintanja, R. Reconstruction of a continuous high-resolution CO2 record over the past 20 million years. Clim. Past 7, 1459–1469 (2011)

    Article  Google Scholar 

  9. 9

    Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008)

    CAS  ADS  Article  Google Scholar 

  10. 10

    Dudley, W. C., Blackwelder, P., Brand, L. & Duplessy, J. C. Stable isotopic composition of coccoliths. Mar. Micropaleontol. 10, 1–8 (1986)

    ADS  Article  Google Scholar 

  11. 11

    Ziveri, P. et al. Stable isotope ‘vital effects’ in coccolith. Earth Planet. Sci. Lett. 210, 137–149 (2003)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Rickaby, R. E. M., Henderiks, J. & Young, J. N. Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species. Clim. Past 6, 771–785 (2010)

    Article  Google Scholar 

  13. 13

    Bolton, C. T., Stoll, H. M. & Mendez Vicente, A. Vital effects in coccolith calcite: Cenozoic climate- p CO 2 drove the diversity of carbon acquisition strategies in coccolithophores? Paleoceanography 27, PA4204 (2012)

    Google Scholar 

  14. 14

    Stoll, H. M. Limited range of interspecific vital effects in coccolith stable isotopic records during the Paleocene–Eocene thermal maximum. Paleoceanography 20, PA1007 (2005)

    ADS  Article  Google Scholar 

  15. 15

    Rost, B., Zondervan, I. & Riebesell, U. Ligh-dependent carbon isotope fractionation in the coccolithophorid Emiliania huxleyi. Limnol. Oceanogr. 47, 120–128 (2002)

    CAS  ADS  Article  Google Scholar 

  16. 16

    Bach, L. T. et al. Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytol. 199, 121–134 (2013)

    CAS  Article  Google Scholar 

  17. 17

    Ziveri, P., Thoms, S., Probert, I., Geisen, M. & Langer, G. A universal carbonate ion effect on stable isotope ratios in unicellular planktonic calcifying organisms. Biogeosciences 9, 1025–1032 (2012)

    CAS  ADS  Article  Google Scholar 

  18. 18

    Kameo, K. & Sato, T. Biogeography of Neogene calcareous nannofossils in the Caribbean and the eastern equatorial Pacific—floral response to the emergence of the Isthmus of Panama. Mar. Micropaleontol. 39, 201–218 (2000)

    ADS  Article  Google Scholar 

  19. 19

    Schneider, B. & Schmittner, A. Simulating the impact of the Panamanian seaway closure on ocean circulation, marine productivity and nutrient cycling. Earth Planet. Sci. Lett. 246, 367–380 (2006)

    CAS  ADS  Article  Google Scholar 

  20. 20

    Kürschner, W. M., Kvacek, Z. & Dilcher, D. L. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc. Natl Acad. Sci. USA 105, 449–453 (2008)

    ADS  Article  Google Scholar 

  21. 21

    Pagani, M., Arthur, M. A. & Freeman, K. H. Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14, 273–292 (1999)

    ADS  Article  Google Scholar 

  22. 22

    Pagani, M. et al. The role of carbon dioxide during the onset of Antarctic glaciation. Science 334, 1261–1264 (2011)

    CAS  ADS  Article  Google Scholar 

  23. 23

    Pearson, P. N., Foster, G. L. & Wade, B. S. Atmospheric carbon dioxide through the Eocene–Oligocene climate transition. Nature 461, 1110–1113 (2009)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Preiss-Daimler, I., Baumann, K.-H. & Heinrich, R. Carbonate budget mass estimates for Neogene discoasters from the Equatorial Atlantic (Ceara Rise: ODP Site 927). J. Micropaleontol. 31, 169–178 (2012)

    Article  Google Scholar 

  25. 25

    Stoll, H. M. et al. Insights on coccolith chemistry from a new ion probe method for analysis of individually picked coccoliths. Geochem. Geophys. Geosyst. 8, Q06020 (2007)

    ADS  Article  Google Scholar 

  26. 26

    Pagani, M., Liu, Z., LaRiviere, J. & Ravelo, A. C. High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nat. Geosci. 3, 27–30 (2009)

    ADS  Article  Google Scholar 

  27. 27

    Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M. & DeConto, R. A 40 million-year history of atmospheric CO2 . Phil. Trans. R. Soc. A, http://dx.doi.org/10.1098/rsta.2013.0096 (in the press)

  28. 28

    LaRiviere, J. P. et al. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 486, 97–100 (2012)

    CAS  ADS  Article  Google Scholar 

  29. 29

    Huang, Y., Clemens, S. C., Liu, W., Wang, Y. & Prell, W. L. Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian Peninsula. Geology 35, 531–534 (2007)

    CAS  ADS  Article  Google Scholar 

  30. 30

    Laws, E. A., Popp, B. N., Cassar, N. & Tanimoto, J. 13C discrimination patterns in oceanic phytoplankton: likely influence of CO2 concentrating mechanisms, and implications for palaeoreconstructions. Funct. Plant Biol. 29, 323–333 (2002)

    CAS  Article  Google Scholar 

  31. 31

    Hopkinson, B. M., Dupont, C. L., Allen, A. E. & Morel, F. M. M. Efficiency of the CO2-concentrating mechanism of diatoms. Proc. Natl Acad. Sci. USA 108, 3830–3837 (2011)

    CAS  ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank L. Abrevaya and A. Mendez for laboratory assistance, and K. Lawrence for access to unpublished data. This work used samples provided by the (Integrated) Ocean Drilling Program (IODP). The IODP is sponsored by the US National Science Foundation and participating countries under management of the IODP Management International, Inc. Funding for this research was provided by European Research Council grant UE-09-ERC-2009-STG-240222-PACE (H.M.S.) and a DuPont Young Professor Award to H.M.S.

Author information

Affiliations

Authors

Contributions

C.T.B. and H.M.S. designed the study and wrote the paper. C.T.B. separated coccoliths and performed stable isotope, light microscope and scanning electron microscope analyses. H.M.S. designed and ran the model.

Corresponding authors

Correspondence to Clara T. Bolton or Heather M. Stoll.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Methods, Supplementary Figures 1-12, Supplementary Tables 1-3 and Supplementary References. (PDF 1668 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bolton, C., Stoll, H. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature 500, 558–562 (2013). https://doi.org/10.1038/nature12448

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing