Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evolutionary origins of the avian brain



Features that were once considered exclusive to modern birds, such as feathers and a furcula, are now known to have first appeared in non-avian dinosaurs1. However, relatively little is known of the early evolutionary history of the hyperinflated brain that distinguishes birds from other living reptiles and provides the important neurological capablities required by flight2. Here we use high-resolution computed tomography to estimate and compare cranial volumes of extant birds, the early avialan Archaeopteryx lithographica, and a number of non-avian maniraptoran dinosaurs that are phylogenetically close to the origins of both Avialae and avian flight. Previous work established that avian cerebral expansion began early in theropod history and that the cranial cavity of Archaeopteryx was volumetrically intermediate between these early forms and modern birds3,4. Our new data indicate that the relative size of the cranial cavity of Archaeopteryx is reflective of a more generalized maniraptoran volumetric signature and in several instances is actually smaller than that of other non-avian dinosaurs. Thus, bird-like encephalization indices evolved multiple times, supporting the conclusion that if Archaeopteryx had the neurological capabilities required of flight, so did at least some other non-avian maniraptorans. This is congruent with recent findings that avialans were not unique among maniraptorans in their ability to fly in some form5,6.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Coelurosaur phylogeny and partitioned endocranial casts.
Figure 2: Bivariate plots of log-transformed body-mass data.
Figure 3: Bivariate plots of log-transformed total-endocranial-volume data.
Figure 4: Principal components analysis plot of neuroanatomical region volumes.


  1. Norell, M. A. & Xu, X. Feathered dinosaurs. Annu. Rev. Earth Planet. Sci. 33, 277–299 (2005)

    CAS  ADS  Article  Google Scholar 

  2. Northcutt, R. G. Evolving large and complex brains. Science 332, 926–927 (2011)

    CAS  ADS  Article  Google Scholar 

  3. Dominguez Alonso, P., Milner, A. C., Ketcham, R. A., Cookson, M. J. & Rowe, T. B. The avian nature of the brain and inner ear of Archaeopteryx. Nature 430, 666–669 (2004)

    ADS  Article  Google Scholar 

  4. Larsson, H. C. E., Sereno, P. C. & Wilson, J. A. Forebrain enlargement among theropod dinosaurs. J. Vert. Paleont. 20, 615–618 (2000)

    Article  Google Scholar 

  5. Hu, D., Hou, L., Zhang, L. & Xu, X. A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature 461, 640–643 (2009)

    CAS  ADS  Article  Google Scholar 

  6. Xu, X. et al. A new feathered maniraptoran dinosaur fossil that fills a morphological gap in avian flight. Chin. Sci. Bull. 54, 430–435 (2009)

    Article  Google Scholar 

  7. Butler, A. B. & Hodos, W. Comparative Vertebrate Neuroanatomy: Evolution and Adaptation (Wiley, 2005)

    Book  Google Scholar 

  8. Gill, F. B. Ornithology (W.H. Freeman, 2006)

    Google Scholar 

  9. Northcutt, R. G. Understanding vertebrate brain evolution. Integr. Comp. Biol. 42, 743–756 (2002)

    Article  Google Scholar 

  10. Jerison, H. J. Evolution of the Brain and Intelligence (Academic Press, 1973)

    Google Scholar 

  11. Northcutt, R. G. & Kaas, J. H. The emergence and evolution of mammalian neocortex. Trends Neurosci. 18, 373–379 (1995)

    CAS  Article  Google Scholar 

  12. Nieuwenhuys, R., Ten Donkelaar, J. H. & Nicholson, C. The Central Nervous System of Vertebrates (Springer, 1998)

    Book  Google Scholar 

  13. Gauthier, J., Kluge, A. G. & Rowe, T. Amniote phylogeny and the importance of fossils. Cladistics 4, 105–209 (1988)

    Article  Google Scholar 

  14. Shimizu, T. & Karten, H. J. in Vision, Brain and Behavior in Birds (eds Zeigler, H. P. & Bischor H.-J. ) 103–114 (MIT, 1993)

    Google Scholar 

  15. Rowe, T. B., Eiting, T. P., Macrini, T. E. & Ketcham, R. A. Organization of the olfactory and respiratory skeleton in the nose of the gray short-tailed opossum Monodelphis domestica. J. Mamm. Evol. 12, 303–336 (2005)

    Article  Google Scholar 

  16. Rowe, T. B., Macrini, T. E. & Luo, Z.-X. Fossil evidence on origin of the mammalian brain. Science 332, 955–957 (2011)

    CAS  ADS  Article  Google Scholar 

  17. Franzosa, J. W. Evolution of the Brain in Theropoda (Dinosauria). PhD thesis, Univ. Texas. (2004)

  18. Witmer, L. M. & Ridgely, R. C. New insights into the brain, braincase, and ear region of tyrannosaurs (Dinosauria, Theropoda), with implications for sensory organization and behavior. Anat. Rec. 292, 1266–1296 (2009)

    Article  Google Scholar 

  19. Bever, G. S., Brusatte, S. L., Balanoff, A. M. & Norell, M. A. Variation, variability, and the origin of the avian endocranium: insights from the anatomy of Alioramus altai (Theropoda: Tyrannosauroidea). PLoS ONE 6, e23393 (2011)

    CAS  ADS  Article  Google Scholar 

  20. Xu, X. et al. Four-winged dinosaurs from China. Nature 421, 335–340 (2003)

    CAS  ADS  Article  Google Scholar 

  21. Xu, X., You, H., Du, K. & Han, F. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 475, 465–470 (2011)

    CAS  Article  Google Scholar 

  22. Christiansen, P. & Fariña, R. A. Mass prediction in theropod dinosaurs. Hist. Biol. 16, 85–92 (2004)

    Article  Google Scholar 

  23. Hopson, J. A. in Biology of the Reptilia Vol. 9 (eds Gans, C., Northcutt, R. G. & Ulinski, P. ) 39–146 (Academic Press, 1979)

    Google Scholar 

  24. Rowe, T. B. Coevolution of the mammalian middle ear and neocortex. Science 273, 651–654 (1996)

    CAS  ADS  Article  Google Scholar 

  25. Bhullar, B.-A. S. et al. Birds have paedomorphic dinosaur skulls. Nature 487, 223–226 (2012)

    CAS  ADS  Article  Google Scholar 

  26. Smaers, J. B., Dechmann, D. K. N., Goswami, A., Soligo, C. & Safi, K. Comparative analyses of evolutionary rates reveal different pathways to encephalization in bats, carnivorans, and primates. Proc. Natl Acad. Sci. USA 109, 18006–18011 (2012)

    CAS  ADS  Article  Google Scholar 

  27. Turner, A. H., Pol, D., Clarke, J. A., Erickson, G. M. & Norell, M. A. Basal dromaeosaurid and size evolution preceding avian flight. Science 317, 1378–1381 (2007)

    CAS  ADS  Article  Google Scholar 

  28. Reiner, A., Yamamoto, K. & Karten, H. J. Organization and evolution of the avian forebrain. Anat. Rec. Pt A 287A, 1080–1102 (2005)

    Article  Google Scholar 

  29. Milner, A. C. & Walsh, S. A. Avian brain evolution: new data from Palaeogene birds (Lower Eocene) from England. Zool. J. Linn. Soc. 155, 198–219 (2009)

    Article  Google Scholar 

  30. Turner, A. H., Makovicky, P. J. & Norell, M. A. A review of dromaeosaurid systematics and paravian phylogeny. Bull. Am. Mus. Nat. Hist. 371, 1–206 (2012)

    Article  Google Scholar 

Download references


Funding for this project was provided by a NSF DDIG (DEB 0909970) to A.M.B. and M.A.N., NSF IIS-0208675 and EAR-0948842 to T.B.R. and a Columbia University International Travel Fellowship to A.M.B. The University of Texas Computed Tomography Facility and the AMNH MIF helped with computed tomographic scanning and processing imagery. M. Colbert, P. Gignac, D. Ksepka, J. Flynn and J. Meng read and provided useful comments on the text.

Author information

Authors and Affiliations



A.M.B., G.S.B. and M.A.N. designed the study. A.M.B. wrote the paper, performed data entry and analytical work, and prepared figures. G.S.B. assisted in data interpretation and helped to write the paper. T.B.R. contributed computed tomography data and assisted in data interpretation. M.A.N. provided computed tomography data and assisted in writing the paper.

Corresponding author

Correspondence to Amy M. Balanoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1- 3, Supplementary Tables 1 -5 and Supplementary References. (PDF 2659 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Balanoff, A., Bever, G., Rowe, T. et al. Evolutionary origins of the avian brain. Nature 501, 93–96 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing