Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reactivating head regrowth in a regeneration-deficient planarian species

Abstract

Species capable of regenerating lost body parts occur throughout the animal kingdom, yet close relatives are often regeneration incompetent1,2. Why in the face of ‘survival of the fittest’ some animals regenerate but others do not remains a fascinating question3. Planarian flatworms are well known and studied for their ability to regenerate from minute tissue pieces, yet species with limited regeneration abilities have been described even amongst planarians4. Here we report the characterization of the regeneration defect in the planarian Dendrocoelum lacteum and its successful rescue. Tissue fragments cut from the posterior half of the body of this species are unable to regenerate a head and ultimately die5. We find that this defect originates during the early stages of head specification, which require inhibition of canonical Wnt signalling in other planarian species6,7,8. Notably, RNA interference (RNAi)-mediated knockdown of Dlac-β-catenin-1, the Wnt signal transducer, restored the regeneration of fully functional heads on tail pieces, rescuing D. lacteum’s regeneration defect. Our results demonstrate the utility of comparative studies towards the reactivation of regenerative abilities in regeneration-deficient animals. Furthermore, the availability of D. lacteum as a regeneration-impaired planarian model species provides a first step towards elucidating the evolutionary mechanisms that ultimately determine why some animals regenerate and others do not.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: D. lacteum cannot regenerate heads posteriorly.
Figure 2: Posterior D. lacteum wounds form a blastema.
Figure 3: Posterior D. lacteum wounds cannot re-specify tissue identity.
Figure 4: Rescue of the D. lacteum regeneration defect by β-catenin1 (RNAi).

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Data deposits

The ddDlac transcriptome assembly is available at http://publications.mpi-cbg.de/5330-site. Time-course RNA-seq reads and named gene sequences have been deposited at GenBank/DDBJ/EMBL under the accession numbers GAKU00000000 (D. lacteum) and GAKV00000000 (S. mediterranea).

References

  1. Sánchez Alvarado, A. & Tsonis, P. A. Bridging the regeneration gap: genetic insights from diverse animal models. Nature Rev. Genet. 7, 873–884 (2006)

    Article  Google Scholar 

  2. Tanaka, E. M. Regeneration: if they can do it, why can’t we? Cell 113, 559–562 (2003)

    Article  CAS  Google Scholar 

  3. Bely, A. E. & Nyberg, K. G. Evolution of animal regeneration: re-emergence of a field. Trends Ecol. Evol. 25, 161–170 (2010)

    Article  Google Scholar 

  4. Brøndsted, H. V. Planarian regeneration (Pergamon Press, 1969)

    Book  Google Scholar 

  5. Morgan, T. H. Notes on regeneration. Biol. Bull. 6, 159–172 (1904)

    Article  Google Scholar 

  6. Gurley, K. A., Rink, J. C. & Sánchez Alvarado, A. β-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319, 323–327 (2008)

    Article  CAS  ADS  Google Scholar 

  7. Petersen, C. P. & Reddien, P. W. Smed-βcatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 319, 327–330 (2008)

    Article  CAS  ADS  Google Scholar 

  8. Iglesias, M., Gómez-Skarmeta, J. L., Saló, E. & Adell, T. Silencing of Smed-βcatenin1 generates radial-like hypercephalized planarians. Development 135, 1215–1221 (2008)

    Article  CAS  Google Scholar 

  9. Agata, K. & Watanabe, K. Molecular and cellular aspects of planarian regeneration. Semin. Cell Dev. Biol. 10, 377–383 (1999)

    Article  CAS  Google Scholar 

  10. Newmark, P. A. & Sánchez Alvarado, A. Not your father’s planarian: a classic model enters the era of functional genomics. Nature Rev. Genet. 3, 210–219 (2002)

    Article  CAS  Google Scholar 

  11. Schockaert, E. R. et al. Global diversity of free living flatworms (Platyhelminthes, ‘Turbellaria’) in freshwater. Hydrobiologia 595, 41–48 (2008)

    Article  Google Scholar 

  12. Stéphan-Dubois, F. & Gilgenkrantz, F. Transplantation et régénération chez la planaire Dendrocoelum lacteum. J. Embryol. Exp. Morphol. 9, 642–649 (1961)

    PubMed  Google Scholar 

  13. Stéphan-Dubois, F. & Bautz, A. Étude histologique et cytologique des néoblastes et des cellules fixes du parenchyme chez des planaires Dendrocoelum lacteum privées de région anterieure. Arch. Anat. Microsc. Morphol. Exp. 64, 75–89 (1975)

    PubMed  Google Scholar 

  14. Sauzin-Monnot, M.-J. Etude ultrastructurale des néoblastes de Dendrocœlum lacteum au cours de la régénération. J. Ultrastruct. Res. 45, 206–222 (1973)

    Article  CAS  Google Scholar 

  15. See Methods section included in the HTML or PDF-versions of the manuscript for further detail.

  16. Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007)

    Article  CAS  Google Scholar 

  17. Cebrià, F. et al. FGFR-related gene nou-darake restricts brain tissues to the head region of planarians. Nature 419, 620–624 (2002)

    Article  ADS  Google Scholar 

  18. Gurley, K. A. et al. Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response. Dev. Biol. 347, 24–39 (2010)

    Article  CAS  Google Scholar 

  19. Rink, J. C. Stem cell systems and regeneration in planaria. Dev. Genes Evol. 223, 67–84 (2013)

    Article  Google Scholar 

  20. Tanaka, E. M. & Reddien, P. W. The cellular basis for animal regeneration. Dev. Cell 21, 172–185 (2011)

    Article  CAS  Google Scholar 

  21. Wenemoser, D., Lapan, S. W., Wilkinson, A. W., Bell, G. W. & Reddien, P. W. A molecular wound response program associated with regeneration initiation in planarians. Genes Dev. 26, 988–1002 (2012)

    Article  CAS  Google Scholar 

  22. Reddien, P. W., Bermange, A. L., Kicza, A. M. & Sánchez Alvarado, A. BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration. Development 134, 4043–4051 (2007)

    Article  CAS  Google Scholar 

  23. Petersen, C. P. & Reddien, P. W. Polarized notum activation at wounds inhibits Wnt function to promote planarian head regeneration. Science 332, 852–855 (2011)

    Article  CAS  ADS  Google Scholar 

  24. Rink, J. C., Gurley, K. A., Elliott, S. A. & Sánchez Alvarado, A. Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia. Science 326, 1406–1410 (2009)

    Article  CAS  ADS  Google Scholar 

  25. Beane, W. S., Morokuma, J., Adams, D. S. & Levin, M. A chemical genetics approach reveals H,K-ATPase-mediated membrane voltage is required for planarian head regeneration. Chem. Biol. 18, 77–89 (2011)

    Article  CAS  Google Scholar 

  26. Felix, D. A. & Aboobaker, A. A. The TALE class homeobox gene Smed-prep defines the anterior compartment for head regeneration. PLoS Genet. 6, e1000915 (2010)

    Article  Google Scholar 

  27. Blassberg, R. A., Felix, D. A., Tejada Romero, B. & Aboobaker, A. A. PBX/extradenticle is required to re-establish axial structures and polarity during planarian regeneration. Development 140, 730–739 (2013)

    Article  CAS  Google Scholar 

  28. Chen, C.-C. G., Wang, I. E. & Reddien, P. W. pbx is required for pole and eye regeneration in planarians. Development 140, 719–729 (2013)

    Article  CAS  Google Scholar 

  29. Petersen, C. P. & Reddien, P. W. A wound-induced Wnt expression program controls planarian regeneration polarity. Proc. Natl Acad. Sci. USA 106, 17061–17066 (2009)

    Article  CAS  ADS  Google Scholar 

  30. Eisenhoffer, G. T., Kang, H. & Sánchez Alvarado, A. Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell 3, 327–339 (2008)

    Article  CAS  Google Scholar 

  31. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnol. 29, 644–652 (2011)

    Article  CAS  Google Scholar 

  32. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357–359 (2012)

    Article  CAS  Google Scholar 

  33. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009)

    Article  Google Scholar 

  34. Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000)

    Article  CAS  Google Scholar 

  35. Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res. 33, W116–W120 (2005)

    Article  CAS  Google Scholar 

  36. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Article  CAS  Google Scholar 

  37. Pearson, B. J. et al. Formaldehyde-based whole-mount in situ hybridization method for planarians. Dev. Dyn. 238, 443–450 (2009)

    Article  Google Scholar 

  38. Schindelin, J. et al. Fiji: an open-source platform for biological image analysis. Nature Methods 9, 676–682 (2012)

    Article  CAS  Google Scholar 

  39. Cebrià, F. & Newmark, P. A. Planarian homologs of netrin and netrin receptor are required for proper regeneration of the central nervous system and the maintenance of nervous system architecture. Development 132, 3691–3703 (2005)

    Article  Google Scholar 

  40. Buchholz, F., Kittler, R., Slabicki, M. & Theis, M. Enzymatically prepared RNAi libraries. Nature Methods 3, 696–700 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Andreas for expert animal care and colleagues at the MPI-CBG for comments.

Author information

Authors and Affiliations

Authors

Contributions

S.-Y.L., C.S., B.F., R.L. and M.V.-F. carried out experiments; A.D. contributed RNA sequencing; S.-Y.L., H.B., N.L. and I.H. carried out bioinformatics analyses; J.C.R. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to J. C. Rink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-14 and additional references. (PDF 9659 kb)

Supplementary Table 1

This file contains a list of the Dlac orthologues and their corresponding transcript ID. (XLSX 13 kb)

Supplementary Table 2

This file contains the primer sequences. (XLSX 32 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, SY., Selck, C., Friedrich, B. et al. Reactivating head regrowth in a regeneration-deficient planarian species. Nature 500, 81–84 (2013). https://doi.org/10.1038/nature12414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12414

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing