Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-state mechanism couples ligand and temperature sensing in riboswitches

Abstract

Riboswitches are cis-acting gene-regulatory RNA elements that can function at the level of transcription, translation and RNA cleavage1,2,3. The commonly accepted molecular mechanism for riboswitch function proposes a ligand-dependent conformational switch between two mutually exclusive states4. According to this mechanism, ligand binding to an aptamer domain induces an allosteric conformational switch of an expression platform, leading to activation or repression of ligand-related gene expression5. However, many riboswitch properties cannot be explained by a pure two-state mechanism. Here we show that the regulation mechanism of the adenine-sensing riboswitch, encoded by the add gene on chromosome II of the human Gram-negative pathogenic bacterium Vibrio vulnificus6, is notably different from a two-state switch mechanism in that it involves three distinct stable conformations. We characterized the temperature and Mg2+ dependence of the population ratios of the three conformations and the kinetics of their interconversion at nucleotide resolution. The observed temperature dependence of a pre-equilibrium involving two structurally distinct ligand-free conformations of the add riboswitch conferred efficient regulation over a physiologically relevant temperature range. Such robust switching is a key requirement for gene regulation in bacteria that have to adapt to environments with varying temperatures. The translational adenine-sensing riboswitch represents the first example, to our knowledge, of a temperature-compensated regulatory RNA element.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modulation of the conformational equilibrium of the wild-type adenine-sensing riboswitch by temperature, Mg2+ and cognate ligand.
Figure 2: Comparison of ligand binding kinetics of WT and MutP2 adenine-sensing riboswitch constructs.
Figure 3: Adenine-dependent expression regulation is only detected for the wild-type riboswitch.
Figure 4: Ligand-dependent conformational equilibria and simulation of the switching efficiency.

Similar content being viewed by others

References

  1. Mironov, A. S. et al. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111, 747–756 (2002)

    Article  CAS  Google Scholar 

  2. Winkler, W., Nahvi, A. & Breaker, R. R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002)

    Article  CAS  ADS  Google Scholar 

  3. Nahvi, A. et al. Genetic control by a metabolite binding mRNA. Chem. Biol. 9, 1043–1049 (2002)

    Article  CAS  Google Scholar 

  4. Garst, A. D., Edwards, A. L. & Batey, R. T. Riboswitches: structures and mechanisms. Cold Spring Harb. Perspect. Biol. 3, a003533 (2011)

    Article  Google Scholar 

  5. Winkler, W. C. & Breaker, R. R. Genetic control by metabolite-binding riboswitches. Chembiochem 4, 1024–1032 (2003)

    Article  CAS  Google Scholar 

  6. Mandal, M. & Breaker, R. R. Adenine riboswitches and gene activation by disruption of a transcription terminator. Nature Struct. Mol. Biol. 11, 29–35 (2004)

    Article  CAS  Google Scholar 

  7. Wickiser, J. K., Cheah, M. T., Breaker, R. R. & Crothers, D. M. The kinetics of ligand binding by an adenine-sensing riboswitch. Biochemistry 44, 13404–13414 (2005)

    Article  CAS  Google Scholar 

  8. Lemay, J. F. & Lafontaine, D. A. Core requirements of the adenine riboswitch aptamer for ligand binding. RNA 13, 339–350 (2007)

    Article  CAS  Google Scholar 

  9. Greenleaf, W. J., Frieda, K. L., Foster, D. A., Woodside, M. T. & Block, S. M. Direct observation of hierarchical folding in single riboswitch aptamers. Science 319, 630–633 (2008)

    Article  CAS  Google Scholar 

  10. Lemay, J. F., Penedo, J. C., Tremblay, R., Lilley, D. M. & Lafontaine, D. A. Folding of the adenine riboswitch. Chem. Biol. 13, 857–868 (2006)

    Article  CAS  Google Scholar 

  11. Noeske, J. et al. An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs. Proc. Natl Acad. Sci. USA 102, 1372–1377 (2005)

    Article  CAS  ADS  Google Scholar 

  12. Lemay, J. F. et al. Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms. PLoS Genet. 7, e1001278 (2011)

    Article  CAS  Google Scholar 

  13. Neupane, K., Yu, H., Foster, D. A., Wang, F. & Woodside, M. T. Single-molecule force spectroscopy of the add adenine riboswitch relates folding to regulatory mechanism. Nucleic Acids Res. 39, 7677–7687 (2011)

    Article  CAS  Google Scholar 

  14. Rieder, R., Lang, K., Graber, D. & Micura, R. Ligand-induced folding of the adenosine deaminase A-riboswitch and implications on riboswitch translational control. Chembiochem 8, 896–902 (2007)

    Article  CAS  Google Scholar 

  15. Serganov, A. et al. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem. Biol. 11, 1729–1741 (2004)

    Article  CAS  Google Scholar 

  16. Lee, M. K., Gal, M., Frydman, L. & Varani, G. Real-time multidimensional NMR follows RNA folding with second resolution. Proc. Natl Acad. Sci. USA 107, 9192–9197 (2010)

    Article  CAS  ADS  Google Scholar 

  17. Wang, J. et al. A method for helical RNA global structure determination in solution using small-angle X-ray scattering and NMR measurements. J. Mol. Biol. 393, 717–734 (2009)

    Article  CAS  Google Scholar 

  18. Dixon, N. et al. Reengineering orthogonally selective riboswitches. Proc. Natl Acad. Sci. USA 107, 2830–2835 (2010)

    Article  CAS  ADS  Google Scholar 

  19. Farrow, N. A., Zhang, O., Forman-Kay, J. D. & Kay, L. E. A heteronuclear correlation experiment for simultaneous determination of 15N longitudinal decay and chemical exchange rates of systems in slow equilibrium. J. Biomol. NMR 4, 727–734 (1994)

    Article  CAS  Google Scholar 

  20. Stoddard, C. D. et al. Nucleotides adjacent to the ligand-binding pocket are linked to activity tuning in the purine riboswitch. J. Mol. Biol. 425, 1596–1611 (2013)

    Article  CAS  Google Scholar 

  21. Buck, J., Furtig, B., Noeske, J., Wohnert, J. & Schwalbe, H. Time-resolved NMR methods resolving ligand-induced RNA folding at atomic resolution. Proc. Natl Acad. Sci. USA 104, 15699–15704 (2007)

    Article  CAS  ADS  Google Scholar 

  22. Mok, K. H. et al. Rapid sample-mixing technique for transient NMR and photo-CIDNP spectroscopy: Applications to real-time protein folding. J. Am. Chem. Soc. 125, 12484–12492 (2003)

    Article  CAS  Google Scholar 

  23. Li, Y. C., Li, Y. M., Zhang, H. & Chen, Y. MicroRNA-mediated positive feedback loop and optimized bistable switch in a cancer network involving miR-17–92. PLoS ONE 6, e18954 (2011)

    Article  CAS  ADS  Google Scholar 

  24. Selinger, D. W. et al. RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nature Biotechnol. 18, 1262–1268 (2000)

    Article  CAS  Google Scholar 

  25. Bennett, B. D. et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nature Chem. Biol. 5, 593–599 (2009)

    Article  CAS  Google Scholar 

  26. Rinnenthal, J., Klinkert, B., Narberhaus, F. & Schwalbe, H. Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution. Nucleic Acids Res. 38, 3834–3847 (2010)

    Article  CAS  Google Scholar 

  27. Kortmann, J. & Narberhaus, F. Bacterial RNA thermometers: molecular zippers and switches. Nature Rev. Microbiol. 10, 255–265 (2012)

    Article  CAS  Google Scholar 

  28. Xu, Q., Dziejman, M. & Mekalanos, J. J. Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc. Natl Acad. Sci. USA 100, 1286–1291 (2003)

    Article  CAS  ADS  Google Scholar 

  29. Wilson, R. C. et al. Tuning riboswitch regulation through conformational selection. J. Mol. Biol. 405, 926–938 (2011)

    Article  CAS  Google Scholar 

  30. Stoldt, M., Wohnert, J., Ohlenschlager, O., Gorlach, M. & Brown, L. R. The NMR structure of the 5S rRNA E-domain–protein L25 complex shows preformed and induced recognition. EMBO J. 18, 6508–6521 (1999)

    Article  CAS  Google Scholar 

  31. Birikh, K. R., Heaton, P. A. & Eckstein, F. The structure, function and application of the hammerhead ribozyme. Eur. J. Biochem. 245, 1–16 (1997)

    Article  CAS  Google Scholar 

  32. Fasman, G. D. Handbook of Biochemistry and Molecular Biology, Nucleic Acids 3rd edn, Vol. 1, 65–215 (CRC Press, 1975)

  33. Piotto, M., Saudek, V. & Sklenar, V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomolec. NMR 2, 661–665 (1992)

    Article  CAS  Google Scholar 

  34. Wacker, A., Buck, J., Richter, C., Schwalbe, H. & Wohnert, J. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches. RNA Biol. 9, 672–680 (2012)

    Article  CAS  Google Scholar 

  35. Marky, L. A. & Breslauer, K. J. Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers 26, 1601–1620 (1987)

    Article  CAS  Google Scholar 

  36. Mergny, J. L. & Lacroix, L. Analysis of thermal melting curves. Oligonucleotides 13, 515–537 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Stirnal, H. Keller and C. Richter for technical support. We thank F. Narberhaus, J. Wöhnert, J. Wachtveitl, J. Soppa, E. Schleiff, A. Heckel, M. Hengesbach and C. Griesinger for stimulating discussions. This work was funded by the German funding agency (DFG) in Collaborative Research Center 902.

Author information

Authors and Affiliations

Authors

Contributions

A.R., S.N., K.S., F.B. and B.F. conducted experiments. All authors contributed to the analysis of the data and the writing of the manuscript.

Corresponding authors

Correspondence to Boris Fürtig or Harald Schwalbe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-12 and Supplementary Data. (PDF 2631 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reining, A., Nozinovic, S., Schlepckow, K. et al. Three-state mechanism couples ligand and temperature sensing in riboswitches. Nature 499, 355–359 (2013). https://doi.org/10.1038/nature12378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12378

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing