Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Onset of deglacial warming in West Antarctica driven by local orbital forcing

Abstract

The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate1,2. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago3,4. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently2,5. Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere6 associated with an abrupt decrease in Atlantic meridional overturning circulation7. However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Antarctic Isotope Records.
Figure 2: Timing of rapid change in Antarctica.
Figure 3: Global records of deglaciation.
Figure 4: Antarctic δ18O response to sea-ice decrease.

References

  1. Huybers, P. & Denton, G. Antarctic temperature at orbital timescales controlled by local summer duration. Nature Geosci. 1, 787–792 (2008)

    ADS  CAS  Article  Google Scholar 

  2. Kawamura, K. et al. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448, 912–916 (2007)

    ADS  CAS  Article  Google Scholar 

  3. Clark, P. U., Pisias, N. G., Stocker, T. F. & Weaver, A. J. The role of the thermohaline circulation in abrupt climate change. Nature 415, 863–869 (2002)

    ADS  CAS  Article  Google Scholar 

  4. Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012)

    ADS  CAS  Article  Google Scholar 

  5. McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004)

    ADS  CAS  Article  Google Scholar 

  6. EPICA community members. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004)

  7. EPICA. Community Members. One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444, 195–198 (2006)

  8. Parrenin, F. et al. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339, 1060–1063 (2013)

    ADS  CAS  Article  Google Scholar 

  9. Nicolas, J. P. & Bromwich, D. H. Climate of West Antarctica and influence of marine air intrusions. J. Clim. 24, 49–67 (2011)

    ADS  Article  Google Scholar 

  10. Noone, D. & Simmonds, I. Sea ice control of water isotope transport to Antarctica and implications for ice core interpretation. J. Geophys. Res. 109, D07105 (2004)

    ADS  Article  Google Scholar 

  11. Steig, E. J. et al. in The West Antarctic Ice Sheet: Behavior and Environment Vol. 77 (eds Alley, R. & Bindschadler, R. ) 75–90 (American Geophysical Union, 2001)

  12. Svensson, A. et al. A 60,000 year Greenland stratigraphic ice core chronology. Clim. Past 4, 47–57 (2008)

    Article  Google Scholar 

  13. Steig, E. J. et al. Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years. Nature Geosci. 6, 372–375 (2013)

    ADS  CAS  Article  Google Scholar 

  14. Stenni, B. et al. Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation. Nature Geosci. 4, 46–49 (2011)

    ADS  CAS  Article  Google Scholar 

  15. Hammer, C. U., Clausen, H. B. & Langway, C. C. 50,000 years of recorded global volcanism. Clim. Change 35, 1–15 (1997)

    CAS  Article  Google Scholar 

  16. Schwander, J. et al. A tentative chronology for the EPICA Dome Concordia ice core. Geophys. Res. Lett. 28, 4243–4246 (2001)

    ADS  Article  Google Scholar 

  17. Wolff, E. W., Rankin, A. M. & Rothlisberger, R. An ice core indicator of Antarctic sea ice production? Geophys. Res. Lett. 30, 2158 (2003)

    ADS  Article  Google Scholar 

  18. Holland, P. R. & Kwok, R. Wind-driven trends in Antarctic sea-ice drift. Nature Geosci. 5, 872–875 (2012)

    ADS  CAS  Article  Google Scholar 

  19. Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2 . Science 323, 1443–1448 (2009)

    ADS  CAS  Article  Google Scholar 

  20. Monnin, E. et al. Atmospheric CO2 concentrations over the last glacial termination. Science 291, 112–114 (2001)

    ADS  CAS  Article  Google Scholar 

  21. Toggweiler, J. R., Russell, J. L. & Carson, S. R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21, PA2005 (2006)

    ADS  Article  Google Scholar 

  22. Lee, S. Y., Chiang, J. C. H., Matsumoto, K. & Tokos, K. S. Southern Ocean wind response to North Atlantic cooling and the rise in atmospheric CO2: modeling perspective and paleoceanographic implications. Paleoceanography 26, PA1214 (2011)

    ADS  Article  Google Scholar 

  23. Collins, L. G., Pike, J., Allen, C. S. & Hodgson, D. A. High-resolution reconstruction of southwest Atlantic sea-ice and its role in the carbon cycle during marine isotope stages 3 and 2. Paleoceanography 27, PA3217 (2012)

    ADS  Article  Google Scholar 

  24. Roeckner, E. et al. The Atmospheric General Circulation Model ECHAM-4: Model Description and Simulation of Present-Day Climate. Report No. 218 90 (Max-Planck-Institut für Meteorologie, 1996)

  25. Braconnot, P. et al. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features. Clim. Past 3, 261–277 (2007)

    Article  Google Scholar 

  26. Huybers, P. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313, 508–511 (2006)

    ADS  CAS  Article  Google Scholar 

  27. Pedro, J. B. et al. The last deglaciation: timing the bipolar seesaw. Clim. Past 7, 671–683 (2011)

    Article  Google Scholar 

  28. Brook, E. J. et al. Timing of millennial-scale climate change at Siple Dome, West Antarctica, during the last glacial period. Quat. Sci. Rev. 24, 1333–1343 (2005)

    ADS  Article  Google Scholar 

  29. Blunier, T. & Brook, E. J. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291, 109–112 (2001)

    ADS  CAS  Article  Google Scholar 

  30. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

    ADS  CAS  Article  Google Scholar 

  31. Lemieux-Dudon, B. et al. Consistent dating for Antarctic and Greenland ice cores. Quat. Sci. Rev. 29, 8–20 (2010)

    ADS  Article  Google Scholar 

  32. Crosson, E. R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Appl. Phys. B 92, 403–408 (2008)

    ADS  CAS  Article  Google Scholar 

  33. Dahl-Jensen, D., Gundestrup, N., Gogineni, S. P. & Miller, H. Basal melt at NorthGRIP modeled from borehole, ice-core and radio-echo sounder observations. Ann. Glaciol. 37, 207–212 (2003)

    ADS  Article  Google Scholar 

  34. Dansgaard, W. & Johnsen, S. J. A flow model and a time scale for the ice core from Camp Century, Greenland. J. Glaciol. 8, 215–223 (1969)

    ADS  Article  Google Scholar 

  35. Sigl, M. et al. A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. J. Geophys. Res. 18, 1151–1169 (2013)

    Google Scholar 

  36. Herron, M. M. & Langway, C. C. Firn densification: an empirical model. J. Glaciol. 25, 373–385 (1980)

    ADS  Article  Google Scholar 

  37. Mitchell, L. E., Brook, E. J., Sowers, T., McConnell, J. R. & Taylor, K. Multidecadal variability of atmospheric methane, 1000-1800 CE. J. Geophys. Res. 116, G02007 (2011)

    ADS  Article  Google Scholar 

  38. Huber, C. et al. Evidence for molecular size dependent gas fractionation in firn air derived from noble gases, oxygen, and nitrogen measurements. Earth Planet. Sci. Lett. 243, 61–73 (2006)

    ADS  CAS  Article  Google Scholar 

  39. Kobashi, T., Severinghaus, J. P., Brook, E. J., Barnola, J. M. & Grachev, A. M. Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice. Quat. Sci. Rev. 26, 1212–1222 (2007)

    ADS  Article  Google Scholar 

  40. Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. & Bender, M. L. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–146 (1998)

    ADS  CAS  Article  Google Scholar 

  41. Fleitmann, D. et al. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys. Res. Lett. 36, L19707 (2009)

    ADS  Article  Google Scholar 

  42. Cheng, H. et al. Ice age terminations. Science 326, 248–252 (2009)

    ADS  CAS  Article  Google Scholar 

  43. Ruth, U. et al. “EDML1”: a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150,000 years. Clim. Past 3, 475–484 (2007)

    Article  Google Scholar 

  44. Bisiaux, M. M. et al. Changes in black carbon deposition to Antarctica from two high-resolution ice core records, 1850-2000 AD. Atmos. Chem. Phys. 12, 4107–4115 (2012)

    ADS  CAS  Article  Google Scholar 

  45. McConnell, J. R. Continuous ice-core chemical analyses using inductively coupled plasma mass spectrometry. Environ. Sci. Technol. 36, 7–11 (2002)

    ADS  CAS  Article  Google Scholar 

  46. McConnell, J. R. et al. 20th-century industrial black carbon emissions altered arctic climate forcing. Science 317, 1381–1384 (2007)

    ADS  CAS  Article  Google Scholar 

  47. Pasteris, D. R., McConnell, J. R. & Edwards, R. High-resolution, continuous method for measurement of acidity in ice cores. Environ. Sci. Technol. 46, 1659–1666 (2012)

    ADS  CAS  Article  Google Scholar 

  48. Röthlisberger, R., Crosta, X., Abram, N. J., Armand, L. & Wolff, E. W. Potential and limitations of marine and ice core sea ice proxies: an example from the Indian Ocean sector. Quat. Sci. Rev. 29, 296–302 (2010)

    ADS  Article  Google Scholar 

  49. Alley, R. B. et al. Changes in continental and sea-salt atmospheric loadings in central Greenland during the most recent deglaciation: model-based estimates. J. Glaciol. 41, 503–514 (1995)

    ADS  Article  Google Scholar 

  50. Dlugokencky, E. J. et al. Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale. J. Geophys. Res. 110, D18306 (2005)

    ADS  Article  Google Scholar 

  51. Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1, 80–83 (1945)

    Article  Google Scholar 

  52. Mauget, S. A. Intra- to multidecadal climate variability over the continental United States: 1932-99. J. Clim. 16, 2215–2231 (2003)

    ADS  Article  Google Scholar 

  53. Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M. & Blade, I. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 12, 1990–2009 (1999)

    ADS  Article  Google Scholar 

  54. Hoffmann, G., Werner, M. & Heimann, M. Water isotope module of the ECHAM atmospheric general circulation model: a study on timescales from days to several years. J. Geophys. Res. 103, 16871–16896 (1998)

    ADS  CAS  Article  Google Scholar 

  55. Ding, Q. H., Steig, E. J., Battisti, D. S. & Kuttel, M. Winter warming in West Antarctica caused by central tropical Pacific warming. Nature Geosci. 4, 398–403 (2011)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Science Foundation (NSF). The authors appreciate the support of the WAIS Divide Science Coordination Office (M. Twickler and J. Souney) for the collection and distribution of the WAIS Divide ice core; Ice Drilling and Design and Operations (K. Dahnert) for drilling; the National Ice Core Laboratory (B. Bencivengo) for curating the core; Raytheon Polar Services (M. Kippenhan) for logistics support in Antarctica; and the 109th New York Air National Guard for airlift in Antarctica. We also thank C. Buizert and S. Marcott for discussions. The following individual NSF grants supported this work: 0944197 (E.D.W., H. Conway); 1043092, 0537930 (E.J.S.); 0944348, 0944191, 0440817, 0440819, 0230396 (K.C.T.); 0538427, 0839093 (J.R.M.); 1043518 (E.J.B.); 1043500 (T.S.); 05379853, 1043167 (J.W.C.W.); 1043528, 0539578 (R.B.A.); 0539232 (K.M.C., G.D.C.); 1103403 (R.L.E., H. Conway); 0739780 (R.E.); 0637211 (G.H.); 0538553, 0839066 (J.C.-D.), 0538657, 1043421 (J.P.S.); 1043313 (M.K.S.); 0801490 (G.J.W). Other support came from a NASA NESSF award (T.J.F.), the USGS Climate and Land Use Change Program (G.D.C., J.J.F.), the National Natural Science Foundation of China (41230524 to H. Cheng) and the Singapore National Research Foundation (NRFF2011-08 to X.W.).

Author information

Authors and Affiliations

Consortia

Contributions

The manuscript was written by T.J.F., E.J.S. and B.R.M. K.C.T. organized the WAIS Divide Project. T.J.F., K.C.T and T.J.P. made the electrical measurements and developed the electrical timescale with K.C.M. E.J.S., J.W.C.W., A.J.S., P.N., B.H.V. and S.W.S. measured the stable-isotope record. J.R.M., M.S., O.J.M. and R.E. developed the chemistry timescale and measured Na. E.J.B., T.S., L.E.M., J.S.E. and J.E.L. made the methane measurements. G.D.C. and K.M.C. measured the borehole temperature profile. J.C.-D. and D.F. provided an independent timescale for the brittle ice. Q.D., S.W.S. and E.J.S. performed the climate modelling. T.J.F., E.D.W., H. Conway and K.M.C. performed the ice-flow modelling to determine the accumulation rate. H. Cheng, R.L.E., X.W., J.P.S. and T.J.F. made comparisons with the Hulu cave timescale. M.K.S., J.J.F., J.M.F., D.E.V. and R.B.A. examined the physical properties of the core. W.M., J.J. and N.M. designed the drill. G.H. designed core-processing techniques. A.J.O., B.H.V., D.E.V., K.C.T., T.J.P. and G.J.W. led collection and processing of the core in the field.

Corresponding author

Correspondence to T. J. Fudge.

Ethics declarations

Competing interests

The author declare no competing financial interests.

Additional information

Lists of participants and their affiliations appear at the end of the paper.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary References and Supplementary Figures 1-10. (PDF 1916 kb)

Supplementary Data

This file contains the data and model output used in figures 1-4. (XLSX 2222 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

WAIS Divide Project Members. Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature 500, 440–444 (2013). https://doi.org/10.1038/nature12376

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12376

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing