Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing

This article has been updated

Abstract

Mammalian pre-implantation development is a complex process involving dramatic changes in the transcriptional architecture1,2,3,4. We report here a comprehensive analysis of transcriptome dynamics from oocyte to morula in both human and mouse embryos, using single-cell RNA sequencing. Based on single-nucleotide variants in human blastomere messenger RNAs and paternal-specific single-nucleotide polymorphisms, we identify novel stage-specific monoallelic expression patterns for a significant portion of polymorphic gene transcripts (25 to 53%). By weighted gene co-expression network analysis5,6, we find that each developmental stage can be delineated concisely by a small number of functional modules of co-expressed genes. This result indicates a sequential order of transcriptional changes in pathways of cell cycle, gene regulation, translation and metabolism, acting in a step-wise fashion from cleavage to morula. Cross-species comparisons with mouse pre-implantation embryos reveal that the majority of human stage-specific modules (7 out of 9) are notably preserved, but developmental specificity and timing differ between human and mouse. Furthermore, we identify conserved key members (or hub genes) of the human and mouse networks. These genes represent novel candidates that are likely to be key in driving mammalian pre-implantation development. Together, the results provide a valuable resource to dissect gene regulatory mechanisms underlying progressive development of early mammalian embryos.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: High-resolution single-cell transcriptome analysis of human pre-implantation embryos.
Figure 2: Tracing parent-of-origin allelic RNA transcripts through SNV analysis in pre-implantation embryos.
Figure 3: Network analysis of human pre-implantation development.
Figure 4: Stage-specific gene activation is preserved in human and mouse pre-implantation development.

Change history

  • 29 August 2013

    Ref. 26 and the associated sentence in the text were corrected; two reference citations in the online Methods were corrected.

References

  1. Niakan, K. K., Han, J., Pedersen, R. A., Simon, C. & Pera, R. A. Human pre-implantation embryo development. Development 139, 829–841 (2012)

    CAS  Article  Google Scholar 

  2. Hamatani, T., Carter, M. G., Sharov, A. A. & Ko, M. S. Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell 6, 117–131 (2004)

    CAS  Article  Google Scholar 

  3. Wang, Q. T. et al. A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev. Cell 6, 133–144 (2004)

    CAS  Article  Google Scholar 

  4. Zeng, F., Baldwin, D. A. & Schultz, R. M. Transcript profiling during preimplantation mouse development. Dev. Biol. 272, 483–496 (2004)

    CAS  Article  Google Scholar 

  5. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008)

    Article  Google Scholar 

  6. Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol.. http://dx.doi.org/10.2202/1544-6115.1128 (2005)

  7. Walser, C. B. & Lipshitz, H. D. Transcript clearance during the maternal-to-zygotic transition. Curr. Opin. Genet. Dev. 21, 431–443 (2011)

    CAS  Article  Google Scholar 

  8. Schier, A. F. The maternal-zygotic transition: death and birth of RNAs. Science 316, 406–407 (2007)

    ADS  CAS  Article  Google Scholar 

  9. Schultz, R. M. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum. Reprod. Update 8, 323–331 (2002)

    CAS  Article  Google Scholar 

  10. Vassena, R. et al. Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. Development 138, 3699–3709 (2011)

    CAS  Article  Google Scholar 

  11. Xie, D. et al. Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Res. 20, 804–815 (2010)

    CAS  Article  Google Scholar 

  12. Zhang, P. et al. Transcriptome profiling of human pre-implantation development. PLoS ONE 4, e7844 (2009)

    ADS  Article  Google Scholar 

  13. Dobson, A. T. et al. The unique transcriptome through day 3 of human preimplantation development. Hum. Mol. Genet. 13, 1461–1470 (2004)

    CAS  Article  Google Scholar 

  14. Tang, F. et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nature Protocols 5, 516–535 (2010)

    CAS  Article  Google Scholar 

  15. Islam, S. et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 21, 1160–1167 (2011)

    CAS  Article  Google Scholar 

  16. Ramskold, D. et al. Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nature Biotech. 30, 777–782 (2012)

    Article  Google Scholar 

  17. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell RNA-seq by multiplexed linear amplification. Cell Rep. 2, 666–673 (2012)

    CAS  Article  Google Scholar 

  18. The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010)

  19. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010)

    CAS  Article  Google Scholar 

  20. Li, Y. et al. Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. Nature Genet. 42, 969–972 (2010)

    CAS  Article  Google Scholar 

  21. Gabriel, S. B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002)

    ADS  CAS  Article  Google Scholar 

  22. Altshuler, D. M. et al. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010)

    ADS  CAS  Article  Google Scholar 

  23. Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature Protocols 4, 1073–1081 (2009)

    CAS  Article  Google Scholar 

  24. Langfelder, P., Luo, R., Oldham, M. C. & Horvath, S. Is my network module preserved and reproducible? PLOS Comput. Biol. 7, e1001057 (2011)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  25. Tang, F. et al. Deterministic and stochastic allele specific gene expression in single mouse blastomeres. PLoS ONE 6, e21208 (2011)

    ADS  CAS  Article  Google Scholar 

  26. Hu, J. et al. Novel importin-α family member Kpna7 is required for normal fertility and fecundity in the mouse. J. Biol. Chem. 285, 33113–33122 (2010)

    CAS  Article  Google Scholar 

  27. Dannenberg, J. H. et al. mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev. 19, 1581–1595 (2005)

    CAS  Article  Google Scholar 

  28. Miller, J. A., Horvath, S. & Geschwind, D. H. Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc. Natl Acad. Sci. USA 107, 12698–12703 (2010)

    ADS  CAS  Article  Google Scholar 

  29. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009)

    CAS  Article  Google Scholar 

  30. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5, 621–628 (2008)

    CAS  Article  Google Scholar 

  31. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010)

    Article  Google Scholar 

  32. Yip, A. M. & Horvath, S. Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics 8, 22 (2007)

    Article  Google Scholar 

  33. Langfelder, P., Zhang, B. & Horvath, S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24, 719–720 (2008)

    CAS  Article  Google Scholar 

  34. Eppig, J. T., Blake, J. A., Bult, C. J., Kadin, J. A. & Richardson, J. E. The Mouse Genome Database (MGD): comprehensive resource for genetics and genomics of the laboratory mouse. Nucleic Acids Res. 40, D881–D886 (2012)

    CAS  Article  Google Scholar 

  35. Horvath, S. & Dong, J. Geometric interpretation of gene coexpression network analysis. PLOS Comput. Biol. 4, e1000117 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  36. Hu, Z., Mellor, J., Wu, J. & DeLisi, C. VisANT: an online visualization and analysis tool for biological interaction data. BMC Bioinformatics 5, 17 (2004)

    Article  Google Scholar 

  37. Huang, D., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc. 4, 44–57 (2009)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank many of our colleagues for invaluable discussions and comments on our study, in particular, P. Pajukanta at UCLA for very helpful suggestions on SNP analyses and D. Geschwind for critically reading the manuscript. This work was supported by 973 Grant Programs 2012CB966300, 2011CB966204 and 2011CB965102 from the Ministry of Science and Technology in China; the International Science and Technology Cooperation Program of China (no. 2011DFB30010); and the National Natural Science Foundation of China (81271258).

Author information

Authors and Affiliations

Authors

Contributions

Z.X., K.H., J.L. and G.F. designed the study. Z.X., L.C., C.J., Y.F., Z.L., Q.Z., L.C. and Y.E.S. carried out experiments or contributed critical reagents and protocols. K.H., C.C. and S.H. analysed the data and performed statistical analyses. K.H. and G.F. wrote the manuscript in discussion with all the authors. All the authors read and approved the manuscript.

Corresponding authors

Correspondence to Zhigang Xue, Jia-yin Liu or Guoping Fan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-9 and Supplementary References. (PDF 884 kb)

Supplementary Table 1

This file contains single-cell RNA-Seq statistics. (XLS 20 kb)

Supplementary Table 2

This file contains inferred Haplotype blocks as described in the methods. (XLS 52 kb)

Supplementary Table 3

This file contains a summary of hub gene data sets. (XLS 56 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xue, Z., Huang, K., Cai, C. et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500, 593–597 (2013). https://doi.org/10.1038/nature12364

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12364

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing