Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Suppression of star formation in the galaxy NGC 253 by a starburst-driven molecular wind

Abstract

The under-abundance of very massive galaxies1,2 in the Universe is frequently attributed to the effect of galactic winds3,4,5,6. Although ionized galactic winds are readily observable, most of the expelled mass (that is, the total mass flowing out from the nuclear region) is likely to be in atomic7,8 and molecular phases9,10,11 that are cooler than the ionized phases. Expanding molecular shells observed in starburst systems such as NGC 253 (ref. 12) and M 82 (refs 13, 14) may facilitate the entrainment of molecular gas in the wind. Although shell properties are well constrained12, determining the amount of outflowing gas emerging from such shells and the connection between this gas and the ionized wind requires spatial resolution better than 100 parsecs coupled with sensitivity to a wide range of spatial scales, a combination hitherto not available. Here we report observations of NGC 253, a nearby15 starburst galaxy (distance  3.4 megaparsecs) known to possess a wind16,17,18,19,20, that trace the cool molecular wind at 50-parsec resolution. At this resolution, the extraplanar molecular gas closely tracks the Hα filaments, and it appears to be connected to expanding molecular shells located in the starburst region. These observations allow us to determine that the molecular outflow rate is greater than 3 solar masses per year and probably about 9 solar masses per year. This implies a ratio of mass-outflow rate to star-formation rate of at least 1, and probably 3, indicating that the starburst-driven wind limits the star-formation activity and the final stellar content.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The warm and hot phases of the galactic wind in NGC 253.
Figure 2: The cool molecular wind in NGC 253.
Figure 3: Integrated molecular wind emission in NGC 253.

References

  1. 1

    Baldry, I. K., Glazebrook, K. & Driver, S. P. On the galaxy stellar mass function, the mass-metallicity relation and the implied baryonic mass function. Mon. Not. R. Astron. Soc. 388, 945–959 (2008)

    CAS  ADS  Google Scholar 

  2. 2

    Somerville, R. S., Hopkins, P. F., Cox, T. J., Robertson, B. E. & Hernquist, L. A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. Mon. Not. R. Astron. Soc. 391, 481–506 (2008)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Veilleux, S., Cecil, G. & Bland-Hawthorn, J. Galactic winds. Annu. Rev. Astron. Astrophys. 43, 769–826 (2005)

    ADS  Article  Google Scholar 

  4. 4

    Davé, R., Oppenheimer, B. D. & Finlator, K. Galaxy evolution in cosmological simulations with outflows — I. Stellar masses and star formation rates. Mon. Not. R. Astron. Soc. 415, 11–31 (2011)

    ADS  Article  Google Scholar 

  5. 5

    Oppenheimer, B. D. et al. Feedback and recycled wind accretion: assembling the z = 0 galaxy mass function. Mon. Not. R. Astron. Soc. 406, 2325–2338 (2010)

    ADS  Article  Google Scholar 

  6. 6

    Hopkins, P. F., Quataert, E. & Murray, N. Stellar feedback in galaxies and the origin of galaxy-scale winds. Mon. Not. R. Astron. Soc. 421, 3522–3537 (2012)

    CAS  ADS  Article  Google Scholar 

  7. 7

    Rupke, D. S., Veilleux, S. & Sanders, D. B. Outflows in active galactic nucleus/starburst-composite ultraluminous infrared galaxies. Astrophys. J. 632, 751–780 (2005)

    CAS  ADS  Article  Google Scholar 

  8. 8

    Rupke, D. S. N. & Veilleux, S. The multiphase structure and power sources of galactic winds in major mergers. Astrophys. J. (in the press); preprint at http://arXiv.org/abs/1303.6866 (2013)

  9. 9

    Walter, F., Weiss, A. & Scoville, N. Molecular gas in M82: resolving the outflow and streamers. Astrophys. J. 580, L21–L25 (2002)

    CAS  ADS  Article  Google Scholar 

  10. 10

    Feruglio, C. et al. Quasar feedback revealed by giant molecular outflows. Astron. Astrophys. 518, L155–L158 (2010)

    ADS  Article  Google Scholar 

  11. 11

    Alatalo, K. et al. Discovery of an active galactic nucleus driven molecular outflow in the local early-type galaxy NGC 1266. Astrophys. J. 735, 88–99 (2011)

    ADS  Article  Google Scholar 

  12. 12

    Sakamoto, K. et al. Molecular superbubbles in the starburst galaxy NGC 253. Astrophys. J. 636, 685–697 (2006)

    CAS  ADS  Article  Google Scholar 

  13. 13

    Weiss, A., Walter, F., Neininger, N. & Klein, U. Evidence for an expanding molecular superbubble in M 82. Astron. Astrophys. 345, L23–L25 (1999)

    CAS  ADS  Google Scholar 

  14. 14

    Matsushita, S. et al. Starburst at the expanding molecular superbubble in M82: self-induced starburst at the inner edge of the superbubble. Astrophys. J. 618, 712–722 (2005)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Dalcanton, J. J. et al. The ACS nearby galaxy survey treasury. Astrophys. J. Suppl. Ser. 183, 67–108 (2009)

    ADS  Article  Google Scholar 

  16. 16

    Strickland, D. K., Heckman, T. M., Weaver, K. A. & Dahlem, M. Chandra observations of NGC 253: new insights into the nature of starburst-driven superwinds. Astron. J. 120, 2965–2974 (2000)

    ADS  Article  Google Scholar 

  17. 17

    Strickland, D. K., Heckman, T. M., Weaver, K. A., Hoopes, C. G. & Dahlem, M. Chandra observations of NGC 253. II. On the origin of diffuse X-ray emission in the halos of starburst galaxies. Astrophys. J. 568, 689–716 (2002)

    CAS  ADS  Article  Google Scholar 

  18. 18

    Westmoquette, M. S., Smith, L. J. & Gallagher, J. S., III Spatially resolved optical integral field unit spectroscopy of the inner superwind of NGC 253. Mon. Not. R. Astron. Soc. 414, 3719–3739 (2011)

    CAS  ADS  Article  Google Scholar 

  19. 19

    Heckman, T. M., Lehnert, M. D., Strickland, D. K. & Armus, L. Absorption-line probes of gas and dust in galactic superwinds. Astrophys. J. Suppl. Ser. 129, 493–516 (2000)

    CAS  ADS  Article  Google Scholar 

  20. 20

    Sugai, H., Davies, R. I. & Ward, M. J. The collimated wind in NGC 253. Astrophys. J. 584, L9–L12 (2003)

    CAS  ADS  Article  Google Scholar 

  21. 21

    Forbes, D. A., Polehampton, E., Stevens, I. R., Brodie, J. P. & Ward, M. J. A multiwavelength view at the heart of the superwind in NGC253. Mon. Not. R. Astron. Soc. 312, 689–697 (2000)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Weaver, K. A., Heckman, T. M., Strickland, D. K. & Dahlem, M. Chandra observations of the evolving core of the starburst galaxy NGC 253. Astrophys. J. 576, L19–L23 (2002)

    ADS  Article  Google Scholar 

  23. 23

    Sturm, E. et al. Massive molecular outflows and negative feedback in ULIRGs observed by Herschel-PACS. Astrophys. J. 733, L16–L20 (2011)

    ADS  Article  Google Scholar 

  24. 24

    Sakamoto, K. et al. Star-forming cloud complexes in the central molecular zone of NGC 253. Astrophys. J. 735, 19–30 (2011)

    ADS  Article  Google Scholar 

  25. 25

    McCray, R. & Kafatos, M. Supershells and propagating star formation. Astrophys. J. 317, 190–196 (1987)

    ADS  Article  Google Scholar 

  26. 26

    Alonso-Herrero, A., Rieke, G. H., Rieke, M. J. & Kelly, D. M. The [Fe II] 1.644 micron emission in M82 and NGC 253: is it a measure of the supernova rate? Astron. J. 125, 1210–1225 (2003)

    CAS  ADS  Article  Google Scholar 

  27. 27

    Ulvestad, J. S. & Antonucci, R. R. J. VLA observations of NGC 253: supernova remnants and H II regions at 1 parsec resolution. Astrophys. J. 488, 621–641 (1997)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Ott, J., Weiss, A., Henkel, C. & Walter, F. The temperature distribution of dense molecular gas in the center of NGC 253. Astrophys. J. 629, 767–780 (2005)

    CAS  ADS  Article  Google Scholar 

  29. 29

    Young, J. S. et al. The FCRAO extragalactic CO survey. I. The data. Astrophys. J. Suppl. Ser. 98, 219–257 (1995)

    CAS  ADS  Article  Google Scholar 

  30. 30

    Tumlinson, J. et al. The large, oxygen-rich halos of star-forming galaxies are a major reservoir of galactic metals. Science 334, 948–952 (2011)

    CAS  ADS  Article  Google Scholar 

Download references

Acknowledgements

A.D.B. acknowledges partial support from a CAREER grant NSF-AST0955836, NSF-AST1139998 and from a Research Corporation for Science Advancement Cottrell Scholar award. S.V. acknowledges partial support through grant NSF-AST100958. E.C.O. is supported by the NSF through grant AST-0908185. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the NSF operated under cooperative agreement by Associated Universities, Inc. We thank M. Lehnert for providing the Hα image, processed by himself and M. Dahlem.

Author information

Affiliations

Authors

Contributions

A.D.B. and S.R.W. performed the detailed calculations used in the analysis. A.K.L., S.R.W. and A.D.B. reduced and analysed the ALMA data. D.B.F. reduced and analysed the HST archival data. A.D.B., F.W., A.K.L. and M.Z. wrote the ALMA proposal and designed the observations with input from co-authors. J.O. obtained and reduced the Mopra observations. A.D.B. wrote the manuscript with input from F.W., A.K.L., S.R.W., S. V. and E.C.O. All authors were participants in the discussion of results, determination of the conclusions and revision of the manuscript.

Corresponding author

Correspondence to Alberto D. Bolatto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00172.S.

Supplementary information

Supplementary Information

This file contains Supplementary Text and additional references. (PDF 174 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bolatto, A., Warren, S., Leroy, A. et al. Suppression of star formation in the galaxy NGC 253 by a starburst-driven molecular wind. Nature 499, 450–453 (2013). https://doi.org/10.1038/nature12351

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing