Abstract
Obesity has become more prevalent in most developed countries over the past few decades, and is increasingly recognized as a major risk factor for several common types of cancer1. As the worldwide obesity epidemic has shown no signs of abating2, better understanding of the mechanisms underlying obesity-associated cancer is urgently needed. Although several events were proposed to be involved in obesity-associated cancer1,3, the exact molecular mechanisms that integrate these events have remained largely unclear. Here we show that senescence-associated secretory phenotype (SASP)4,5 has crucial roles in promoting obesity-associated hepatocellular carcinoma (HCC) development in mice. Dietary or genetic obesity induces alterations of gut microbiota, thereby increasing the levels of deoxycholic acid (DCA), a gut bacterial metabolite known to cause DNA damage6. The enterohepatic circulation of DCA provokes SASP phenotype in hepatic stellate cells (HSCs)7, which in turn secretes various inflammatory and tumour-promoting factors in the liver, thus facilitating HCC development in mice after exposure to chemical carcinogen. Notably, blocking DCA production or reducing gut bacteria efficiently prevents HCC development in obese mice. Similar results were also observed in mice lacking an SASP inducer8 or depleted of senescent HSCs, indicating that the DCA–SASP axis in HSCs has key roles in obesity-associated HCC development. Moreover, signs of SASP were also observed in the HSCs in the area of HCC arising in patients with non-alcoholic steatohepatitis3, indicating that a similar pathway may contribute to at least certain aspects of obesity-associated HCC development in humans as well. These findings provide valuable new insights into the development of obesity-associated cancer and open up new possibilities for its control.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Preterm birth is associated with xenobiotics and predicted by the vaginal metabolome
Nature Microbiology Open Access 12 January 2023
-
The intestinal clock drives the microbiome to maintain gastrointestinal homeostasis
Nature Communications Open Access 14 October 2022
-
Morchella esculenta polysaccharide attenuate obesity, inflammation and modulate gut microbiota
AMB Express Open Access 03 September 2022
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.




Accession codes
Accessions
DDBJ/GenBank/EMBL
Data deposits
Bacterial 16S rRNA amplicon sequence data have been deposited in DDBJ (http://www.ddbj.nig.ac.jp/index-e.html) with the accession number DRA000952.
References
Khandekar, M. J., Cohen, P. & Spiegelman, B. M. Molecular mechanisms of cancer development in obesity. Nature Rev. Cancer 11, 886–895 (2011)
Calle, E. E. & Kaaks, R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nature Rev. Cancer 4, 579–591 (2004)
Sun, B. & Karin, M. Obesity, inflammation, and liver cancer. J. Hepatol. 56, 704–713 (2012)
Coppé, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008)
Kuilman, T. & Peeper, D. S. Senescence-messaging secretome: SMS-ing cellular stress. Nature Rev. Cancer 9, 81–94 (2009)
Ridlon, J. M., Kang, D. J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006)
Friedman, S. L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88, 125–172 (2008)
Orjalo, A. V., Bhaumik, D., Gengler, B. K., Scott, G. K. & Campisi, J. Cell surface-bound IL-1α is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc. Natl Acad. Sci. USA 106, 17031–17036 (2009)
Collado, M. & Serrano, M. Senescence in tumours: evidence from mice and humans. Nature Rev. Cancer 10, 51–57 (2010)
Kuilman, T., Michaloglou, C., Mooi, W. J. & Peeper, D. S. The essence of senescence. Genes Dev. 24, 2463–2479 (2010)
Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008)
Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011)
Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197–208 (2010)
Newell, P. et al. Ras pathway activation in hepatocellular carcinoma and anti-tumoral effect of combined sorafenib and rapamycin in vivo. J. Hepatol. 51, 725–733 (2009)
Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996)
Ohtani, N. et al. Visualizing the dynamics of p21Waf1/Cip1 cyclin-dependent kinase inhibitor expression in living animals. Proc. Natl Acad. Sci. USA 104, 15034–15039 (2007)
Coppé, J.-P. et al. Tumor suppressor and aging biomarker p16INK4a induces cellular senescence without the associated inflammatory secretory phenotype. J. Biol. Chem. 286, 36396–36403 (2011)
Sato, Y. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nature Biotechnol. 26, 431–442 (2008)
Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006)
Dapito, D. H. et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21, 504–516 (2012)
Payne, C. M. et al. Deoxycholate induces mitochondrial oxidative stress and activates NF-κB through multiple mechanisms in HCT-116 colon epithelial cells. Carcinogenesis 28, 215–222 (2007)
Takahashi, A. et al. DNA damage signaling triggers degradation of histone methyltransferases through APC/CCdh1 in senescent cells. Mol. Cell 45, 123–131 (2012)
McGarr, S. E., Ridlon, J. M. & Hylemon, P. B. Diet, anaerobic bacterial metabolism, and colon cancer: a review of the literature. J. Clin. Gastroenterol. 39, 98–109 (2005)
Kitazawa, S. et al. Enhanced preneoplastic liver lesion development under ‘selection pressure’ conditions after administration of deoxycholic or lithocholic acid in the initiation phase in rats. Carcinogenesis 11, 1323–1328 (1990)
Minamida, K., Ohashi, M., Hara, H., Asano, K. & Tomita, F. Effects of ingestion of difructose anhydride III (DFA III) and the DFA III-assimilating bacterium Ruminococcus productus on rat intestine. Biosci. Biotechnol. Biochem. 70, 332–339 (2006)
Beuers, U. Drug insight: mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat. Clin. Pract. Gastroenterol. Hepatol. 3, 318–328 (2006)
Ridlon, J. M. & Hylemon, P. B. Identification and characterization of two bile acid coenzyme A transferases from Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium. J. Lipid Res. 53, 66–76 (2012)
Schnabl, B., Purbeck, G. A., Choi, Y. H., Hagedorn, C. H. & Brenner, D. A. Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology 37, 653–664 (2003)
Takuma, Y. & Nouso, K. Nonalcoholic steatohepatitis-associated hepatocellular carcinoma: our case series and literature review. World J. Gastroenterol. 16, 1436–1441 (2010)
Rafter, J. J. et al. Cellular toxicity of fecal water depends on diet. Am. J. Clin. Nutr. 45, 559–563 (1987)
Horai, R. et al. Production of mice deficient in genes for interleukin (IL)-1α, IL-1β, IL-1α/β, and IL-1 receptor antagonist shows that IL-1β is crucial in turpentine-induced fever development and glucocorticoid secretion. J. Exp. Med. 187, 1463–1475 (1998)
Reagan-Shaw, S., Nihal, M. & Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 22, 659–661 (2008)
Yamakoshi, K. et al. Real-time in vivo imaging of p16Ink4a reveals cross talk with p53. J. Cell Biol. 186, 393–407 (2009)
Collins, M. D. et al. The phylogeny of the genus Clostridium: proposal of five new general and eleven new species combinations. Int. J. Syst. Bacteriol. 44, 812–826 (1994)
Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011)
Song, Y., Liu, C. & Finegold, S. M. Real-time PCR quantitation of clostridia in feces of autistic children. Appl. Environ. Microbiol. 70, 6459–6465 (2004)
Ooga, T. et al. Metabolomic anatomy of an animal model revealing homeostatic imbalances in dyslipidaemia. Mol. Biosyst. 7, 1217–1223 (2011)
Muto, A. et al. Detection of Δ4-3-oxo-steroid 5β-reductase deficiency by LC–ESI-MS/MS measurement of urinary bile acids. J. Chromatogr. B 900, 24–31 (2012)
Sekiya, Y. et al. Down-regulation of cyclin E1 expression by microRNA-195 accounts for interferon-β-induced inhibition of hepatic stellate cell proliferation. J. Cell. Physiol. 226, 2535–2542 (2011)
Acknowledgements
The authors thank M. Oshima for suggestions in antibiotics treatment and members of the Hara laboratory for discussion during the preparation of this manuscript. This work was supported by grants from Japan Science and Technology Agency (JST), Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), Ministry of Health, Labour and Welfare of Japan (MHLW), Uehara Memorial Foundation and Takeda Science Foundation. S.Y. was partly supported by a postdoctoral fellowship from the Japan Society for Promotion of Science (JSPS). T.M.L. was partly supported by an international scholarship from the Ajinomoto Scholarship Foundation.
Author information
Authors and Affiliations
Contributions
E.H. and N.O. designed the experiments, analysed the data and wrote the manuscript. N.O., S.Y. and T.M.L. performed obesity-induced liver cancer experiments. K.A., K.O., H.M., M.H. and K.H. performed bacterial genome data analysis. H.K., S.S. and Y.I. performed histopathological analysis of mouse and human liver cancer specimens. S.O. performed metabolite analysis. Y.I. provided Il-1β−/− mice. E.H. oversaw the projects.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Figures
This file contains Supplementary Figures 1-16 and Supplementary References. (PDF 17390 kb)
Rights and permissions
About this article
Cite this article
Yoshimoto, S., Loo, T., Atarashi, K. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101 (2013). https://doi.org/10.1038/nature12347
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature12347
This article is cited by
-
Preterm birth is associated with xenobiotics and predicted by the vaginal metabolome
Nature Microbiology (2023)
-
Imbalance in ALR ubiquitination accelerates the progression of nonalcoholic steatohepatitis to hepatocellular carcinoma
Oncogene (2023)
-
Mycotoxins and cellular senescence: the impact of oxidative stress, hypoxia, and immunosuppression
Archives of Toxicology (2023)
-
Morchella esculenta polysaccharide attenuate obesity, inflammation and modulate gut microbiota
AMB Express (2022)
-
The roles and mechanisms of senescence-associated secretory phenotype (SASP): can it be controlled by senolysis?
Inflammation and Regeneration (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.