Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Feeding andesitic eruptions with a high-speed connection from the mantle


Convergent margin volcanism is ultimately fed by magmas generated in the mantle, but the connection between the mantle and the eruption at the surface is typically obscured by cooling, crystallization and magma mixing within the crust1,2,3. Geophysical techniques are also not very effective in the lower and middle crust, where seismic events are rare and resolution is generally poor4,5. It has thus been unclear how fast mantle-derived magmas transit the crust and recharge crustal magma chambers. Here we use diffusion modelling of nickel zonation profiles in primitive olivines from diverse primary melts6,7,8,9,10 to show how mantle recharge may occur on timescales as short as eruptions themselves. In Irazú volcano in Costa Rica, magmas apparently ascend from their source region in the mantle through crust about 35 kilometres thick in just months to years, recharging hybrid basaltic andesites over the course of the eruption. These results show that large stratovolcanoes with shallow magma chambers11,12 may still preserve the deep record of their mantle origin in olivine crystals. This approach—documenting magma ascent timescales from the mantle beneath a convergent margin stratovolcano—can be applied to other eruptions that record magma mixing with recharge melts. Signs of volcanic unrest are typically monitored at the surface or upper crust; new efforts should look deeper, tracking magma movement from the base of the crust to the surface in the months to years before eruptions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Compositional diversity in olivine phenocrysts.
Figure 2: Nickel and forsterite zoning in olivine from Irazú volcano.
Figure 3: Representative zonation profiles for three magnesian olivine phenocrysts.
Figure 4: Mantle melt mixing-to-eruption timescales for all analysed olivines.

Similar content being viewed by others


  1. Kent, A. J. R., Darr, C., Koleszar, A. M., Salisbury, M. J. & Cooper, K. M. Preferential eruption of andesitic magmas through recharge filtering. Nature Geosci. 3, 631–636 (2010)

    Article  CAS  ADS  Google Scholar 

  2. Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006)

    Article  CAS  Google Scholar 

  3. Dungan, M. A., Wulfe, A. & Thompson, R. Eruptive stratigraphy of the Tatara-San Pedro complex, 36 °S, Southern Volcanic Zone, Chilean Andes: reconstruction method and implications for magma evolution at long-lived arc volcanic centers. J. Petrol. 42, 555–626 (2001)

    Article  CAS  ADS  Google Scholar 

  4. Shelly, D. R. & Hill, D. P. Migrating swarms of brittle-failure earthquakes in the lower crust beneath Mammoth Mountain, California. Geophys. Res. Lett. 38, L20307 (2011)

    ADS  Google Scholar 

  5. White, R. S. et al. Dynamics of dyke intrusion in the mid-crust of Iceland. Earth Planet. Sci. Lett. 304, 300–312 (2011)

    Article  CAS  ADS  Google Scholar 

  6. Sobolev, A. V., Hofmann, A. W., Sobolev, S. V. & Nikogosian, I. K. An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590–597 (2005)

    Article  CAS  ADS  Google Scholar 

  7. Straub, S. M., LaGatta, A. B., Martin-Del Pozzo, A. L. & Langmuir, C. H. Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochem. Geophys. Geosyst. 9, Q03007 (2008)

    Article  ADS  Google Scholar 

  8. Wang, Z. & Gaetani, G. A. Partitioning of Ni between olivine and siliceous eclogite partial melt: experimental constraints on the mantle source of Hawaiian basalts. Contrib. Mineral. Petrol. 156, 661–678 (2008)

    Article  CAS  ADS  Google Scholar 

  9. Li, C. & Ripley, E. M. The relative effects of composition and temperature on olivine-liquid Ni partitioning: statistical deconvolution and implications for petrologic modeling. Chem. Geol. 275, 99–104 (2010)

    Article  CAS  ADS  Google Scholar 

  10. Straub, S. M. et al. Formation of hybrid arc andesites beneath thick continental crust. Earth Planet. Sci. Lett. 303, 337–347 (2011)

    Article  CAS  ADS  Google Scholar 

  11. Alvarado, G. E. et al. Recent volcanic history of Irazú volcano, Costa Rica: alternation and mixing of two magma batches, and pervasive mixing. Spec. Pap. Geol. Soc. Am. 412, 259–276 (2006)

    Google Scholar 

  12. Dzierma, Y. et al. Imaging crustal structure in south central Costa Rica with receiver functions. Geochem. Geophys. Geosyst. 11, Q08S26 (2010)

    Article  Google Scholar 

  13. Carr, M. J. et al. Element fluxes from the volcanic front of Nicaragua and Costa Rica. Geochem. Geophys. Geosyst. 8, Q06001 (2007)

    Article  ADS  Google Scholar 

  14. Tamura, Y., Yuhara, M. & Ishii, T. Primary arc basalts from Daisen volcano, Japan: equilibrium crystal fractionation versus disequilibrium fractionation during supercooling. J. Petrol. 41, 431–448 (2000)

    Article  CAS  ADS  Google Scholar 

  15. Alvarado Induni, G. E. Volcanology and Petrology of Irazú Volcano, Costa Rica PhD thesis, 1–261 (Christian-Albrechts-Universität zu Kiel, 1993)

    Google Scholar 

  16. Petry, C., Chakraborty, S. & Palme, H. Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation. Geochim. Cosmochim. Acta 68, 4179–4188 (2004)

    Article  CAS  ADS  Google Scholar 

  17. Holzapfel, C., Chakraborty, S., Rubie, D. C. & Frost, D. J. Effect of pressure on Fe-Mg, Ni and Mn diffusion in (FexMg1-x) 2SiO4 olivine. Phys. Earth Planet. Inter. 162, 186–198 (2007)

    Article  CAS  ADS  Google Scholar 

  18. Spandler, C. & O’Neill, H. Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1,300°C with some geochemical implications. Contrib. Mineral. Petrol. 159, 791–818 (2010)

    Article  CAS  ADS  Google Scholar 

  19. Milman-Barris, M. et al. Zoning of phosphorus in igneous olivine. Contrib. Mineral. Petrol. 155, 739–765 (2008)

    Article  CAS  ADS  Google Scholar 

  20. Qian, Q., O’Neill, H. S. C. & Hermann, J. Comparative diffusion coefficients of major and trace elements in olivine at 950 °C from a xenocryst included in dioritic magma. Geology 38, 331–334 (2010)

    Article  CAS  ADS  Google Scholar 

  21. Arculus, R. J. & Wills, K. J. A. The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc. J. Petrol. 21, 743–799 (1980)

    Article  ADS  Google Scholar 

  22. Ghiorso, M. S., Hirschmann, M. M. & Reiners, P. W. &. Kress, V. C. III. The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem. Geophys. Geosyst. 3 doi:10.1029/2001GC000217 (2002)

  23. Danyushevsky, L. V. & Plechov, P. Petrolog3: integrated software for modeling crystallization processes. Geochem. Geophys. Geosyst. 12, Q07021 (2011)

    Article  ADS  Google Scholar 

  24. Rutherford, M. J. Magma ascent rates. Rev. Mineral. Geochem. 69, 241–271 (2008)

    Article  CAS  Google Scholar 

  25. Weaver, S. L., Wallace, P. J. & Johnston, A. D. A comparative study of continental vs. intraoceanic arc mantle melting: experimentally determined phase relations of hydrous primitive melts. Earth Planet. Sci. Lett. 308, 97–106 (2011)

    Article  CAS  ADS  Google Scholar 

  26. Benjamin, E. et al. High water contents in basaltic magmas from Irazu Volcano, Costa Rica. J. Volcanol. Geotherm. Res. 168, 68–92 (2007)

    Article  CAS  ADS  Google Scholar 

  27. Lizarralde, D. et al. Crustal structure along the active Costa Rican volcanic arc. Am. Geophys. Union Fall Mtg Abstr.. T13A–2176. (2010)

  28. Klein, F. W. Earthquakes at Loihi Submarine Volcano and the Hawaiian Hot Spot. J. Geophys. Res. 87, 7719–7726 (1982)

    Article  ADS  Google Scholar 

  29. Tarasewicz, J., Brandsdóttir, B., White, R. S., Hensch, M. & Thorbjarnardóttir, B. Using microearthquakes to track repeated magma intrusions beneath the Eyjafjallajökull stratovolcano, Iceland. J. Geophys. Res. 117, B00C06 (2012)

    Article  ADS  Google Scholar 

  30. Costa, F. & Dungan, M. A. Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine. Geology 33, 837–840 (2005)

    Article  CAS  ADS  Google Scholar 

  31. Sisson, T. W. & Bronto, S. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia. Nature 391, 883–886 (1998)

    Article  CAS  ADS  Google Scholar 

  32. Grove, T. L. et al. Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts. Contrib. Mineral. Petrol. 148, 542–565 (2004)

    Article  ADS  Google Scholar 

  33. Costa, F. & Morgan, D. in Timescales of Magmatic Processes: From Core to Atmosphere (eds Dosseto, A., Turner, S. P. & Van Orman, J. A. ) 125–159 (Wiley-Blackwell, 2010)

    Google Scholar 

  34. White, R. W. Ultramafic inclusions in basaltic rocks from Hawaii. Contrib. Mineral. Petrol. 12, 245–314 (1966)

    Article  ADS  Google Scholar 

  35. Jarosewich, E., Gooley, R. & Husler, J. Chromium augite — a new microprobe reference sample. Geostand. Newsl. 11, 197–198 (1987)

    Article  CAS  Google Scholar 

  36. Taura, H., Yurimoto, H., Kurita, K. & Sueno, S. Pressure dependence on partition coefficients for trace elements between olivine and the coexisting melts. Phys. Chem. Miner. 25, 469–484 (1998)

    Article  CAS  ADS  Google Scholar 

  37. Jarosewich, E., Nelen, J. A. & Norberg, J. A. Reference samples for electron microprobe analysis. Geostand. Newsl. 4, 43–47 (1980)

    Article  Google Scholar 

  38. Norman, M. D. Melting and metasomatism in the continental lithosphere: laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia. Contrib. Mineral. Petrol. 130, 240–255 (1998)

    Article  CAS  ADS  Google Scholar 

  39. Sobolev, A. V. et al. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417 (2007)

    Article  CAS  ADS  Google Scholar 

  40. Ruprecht, P. & Cooper, K. M. Integrating the uranium-series and elemental diffusion geochronometers in mixed magmas from volcán Quizapu, Central Chile. J. Petrol. 53, 841–871 (2012)

    Article  CAS  ADS  Google Scholar 

  41. Couch, S., Sparks, R. S. J. & Carroll, M. R. Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature 411, 1037–1039 (2001)

    Article  CAS  ADS  Google Scholar 

  42. Ruprecht, P. & Wörner, G. Variable regimes in magma systems documented in plagioclase zoning patterns: El Misti stratovolcano and Andahua monogenetic cones. J. Volcanol. Geotherm. Res. 165, 142–162 (2007)

    Article  CAS  ADS  Google Scholar 

  43. Ruprecht, P., Bergantz, G. W. & Dufek, J. Modeling of gas-driven magmatic overturn: tracking of phenocryst dispersal and gathering during magma mixing. Geochem. Geophys. Geosyst. 9, Q07017 (2008)

    Article  ADS  Google Scholar 

Download references


We thank G. Alvarado for help during tephra sampling and S. Straub for discussions on olivine partitioning. The work was funded by a Feodor-Lynen Fellowship from the Alexander-von-Humboldt foundation to P.R. and NSF grant EAR 0948533 to T.P. This is Lamont-Doherty Earth Observatory contribution 7695.

Author information

Authors and Affiliations



P.R. designed the study and led the sampling, analytical, diffusion and thermal modelling efforts. P.R. and T.P. equally contributed to the discussions and interpretation of the data and both participated equally in the writing stages.

Corresponding author

Correspondence to Philipp Ruprecht.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-8 and additional references. (PDF 4495 kb)

Supplementary Table 1

This table shows the data for Ni diffusion mixing-to-eruption timescales for Irazú olivines. (XLSX 42 kb)

Supplementary Table 2

This table contains data for melt inclusion compositions. (XLSX 53 kb)

Supplementary Table 3

This table contains LA-ICPMS data for reversely zoned crystals. (XLSX 393 kb)

Supplementary Table 4

This table contains data for Monte-carlo variations. (XLSX 39 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruprecht, P., Plank, T. Feeding andesitic eruptions with a high-speed connection from the mantle. Nature 500, 68–72 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing