Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons


Neuromodulatory control by oxytocin is essential to a wide range of social1,2, parental3 and stress-related behaviours4. Autism spectrum disorders (ASD) are associated with deficiencies in oxytocin levels5 and with genetic alterations of the oxytocin receptor (OXTR)6. Thirty years ago, Mühlethaler et al.7 found that oxytocin increases the firing of inhibitory hippocampal neurons, but it remains unclear how elevated inhibition could account for the ability of oxytocin to improve information processing in the brain. Here we describe in mammalian hippocampus a simple yet powerful mechanism by which oxytocin enhances cortical information transfer while simultaneously lowering background activity, thus greatly improving the signal-to-noise ratio. Increased fast-spiking interneuron activity not only suppresses spontaneous pyramidal cell firing, but also enhances the fidelity of spike transmission and sharpens spike timing. Use-dependent depression at the fast-spiking interneuron–pyramidal cell synapse is both necessary and sufficient for the enhanced spike throughput. We show the generality of this novel circuit mechanism by activation of fast-spiking interneurons with cholecystokinin or channelrhodopsin-2. This provides insight into how a diffusely delivered neuromodulator can improve the performance of neural circuitry that requires synapse specificity and millisecond precision.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Oxytocin receptor agonist (TGOT) reduces spontaneous firing but enhances EPSP-spike coupling in CA1 pyramidal neurons.
Figure 2: TGOT activates FSIs and suppresses feed-forward inhibition.
Figure 3: Paired recordings reveal synaptic locus of TGOT-induced decrease in evoked inhibition.
Figure 4: Generalization to other brain states and modulators.


  1. 1

    Domes, G., Heinrichs, M., Michel, A., Berger, C. & Herpertz, S. C. Oxytocin improves “mind-reading” in humans. Biol. Psychiatry 61, 731–733 (2007)

    CAS  Article  Google Scholar 

  2. 2

    Ferguson, J. N., Aldag, J. M., Insel, T. R. & Young, L. J. Oxytocin in the medial amygdala is essential for social recognition in the mouse. J. Neurosci. 21, 8278–8285 (2001)

    CAS  Article  Google Scholar 

  3. 3

    Tomizawa, K. et al. Oxytocin improves long-lasting spatial memory during motherhood through MAP kinase cascade. Nature Neurosci. 6, 384–390 (2003)

    CAS  Article  Google Scholar 

  4. 4

    Knobloch, H. S. et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73, 553–566 (2012)

    CAS  Article  Google Scholar 

  5. 5

    Modahl, C. et al. Plasma oxytocin levels in autistic children. Biol. Psychiatry 43, 270–277 (1998)

    CAS  Article  Google Scholar 

  6. 6

    Wu, S. et al. Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol. Psychiatry 58, 74–77 (2005)

    CAS  Article  Google Scholar 

  7. 7

    Mühlethaler, M., Charpak, S. & Dreifuss, J. J. Contrasting effects of neurohypophysial peptides on pyramidal and non-pyramidal neurones in the rat hippocampus. Brain Res. 308, 97–107 (1984)

    Article  Google Scholar 

  8. 8

    Pouille, F. & Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293, 1159–1163 (2001)

    CAS  Article  Google Scholar 

  9. 9

    Buzsáki, G. & Eidelberg, E. Commissural projection to the dentate gyrus of the rat: evidence for feed-forward inhibition. Brain Res. 230, 346–350 (1981)

    Article  Google Scholar 

  10. 10

    Zaninetti, M. & Raggenbass, M. Oxytocin receptor agonists enhance inhibitory synaptic transmission in the rat hippocampus by activating interneurons in stratum pyramidale. Eur. J. Neurosci. 12, 3975–3984 (2000)

    CAS  Article  Google Scholar 

  11. 11

    Földy, C., Lee, S. Y., Szabadics, J., Neu, A. & Soltesz, I. Cell type-specific gating of perisomatic inhibition by cholecystokinin. Nature Neurosci. 10, 1128–1130 (2007)

    Article  Google Scholar 

  12. 12

    Wilson, R. I., Kunos, G. & Nicoll, R. A. Presynaptic specificity of endocannabinoid signaling in the hippocampus. Neuron 31, 453–462 (2001)

    CAS  Article  Google Scholar 

  13. 13

    Yoshida, M. et al. Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J. Neurosci. 29, 2259–2271 (2009)

    CAS  Article  Google Scholar 

  14. 14

    Alberi, S., Dreifuss, J. J. & Raggenbass, M. The oxytocin-induced inward current in vagal neurons of the rat is mediated by G protein activation but not by an increase in the intracellular calcium concentration. Eur. J. Neurosci. 9, 2605–2612 (1997)

    CAS  Article  Google Scholar 

  15. 15

    Galarreta, M. & Hestrin, S. Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nature Neurosci. 1, 587–594 (1998)

    CAS  Article  Google Scholar 

  16. 16

    Kraushaar, U. & Jonas, P. Efficacy and stability of quantal GABA release at a hippocampal interneuron-principal neuron synapse. J. Neurosci. 20, 5594–5607 (2000)

    CAS  Article  Google Scholar 

  17. 17

    Persico, A. M. & Bourgeron, T. Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci. 29, 349–358 (2006)

    CAS  Article  Google Scholar 

  18. 18

    Guastella, A. J. et al. Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol. Psychiatry 67, 692–694 (2010)

    CAS  Article  Google Scholar 

  19. 19

    Anagnostou, E. et al. Intranasal oxytocin versus placebo in the treatment of adults with autism spectrum disorders: a randomized controlled trial. Mol. Autism 3, 16 (2012)

    CAS  Article  Google Scholar 

  20. 20

    Gogolla, N. et al. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J. Neurodevelop. Disord. 1, 172–181 (2009)

    Article  Google Scholar 

  21. 21

    Dinstein, I. et al. Unreliable evoked responses in autism. Neuron 75, 981–991 (2012)

    CAS  Article  Google Scholar 

  22. 22

    Kinsley, C. H. et al. Motherhood improves learning and memory. Nature 401, 137–138 (1999)

    ADS  Article  Google Scholar 

  23. 23

    Verret, L. et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708–721 (2012)

    CAS  Article  Google Scholar 

  24. 24

    Lee, S. H. et al. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488, 379–383 (2012)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Glickfeld, L. L. & Scanziani, M. Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells. Nature Neurosci. 9, 807–815 (2006)

    CAS  Article  Google Scholar 

  26. 26

    Madison, D. V. & Nicoll, R. A. Actions of noradrenaline recorded intracellularly in rat hippocampal CA1 pyramidal neurones, in vitro. J. Physiol. (Lond.) 372, 221–244 (1986)

    CAS  Article  Google Scholar 

  27. 27

    Segal, M. & Bloom, F. E. The action of norepinephrine in the rat hippocampus. IV. The effects of locus coeruleus stimulation on evoked hippocampal unit activity. Brain Res. 107, 513–525 (1976)

    CAS  Article  Google Scholar 

  28. 28

    Kuo, S. P. & Trussell, L. O. Spontaneous spiking and synaptic depression underlie noradrenergic control of feed-forward inhibition. Neuron 71, 306–318 (2011)

    CAS  Article  Google Scholar 

  29. 29

    Bergles, D. E., Doze, V. A., Madison, D. V. & Smith, S. J. Excitatory actions of norepinephrine on multiple classes of hippocampal CA1 interneurons. J. Neurosci. 16, 572–585 (1996)

    CAS  Article  Google Scholar 

  30. 30

    Doze, V. A., Cohen, G. A. & Madison, D. V. Synaptic localization of adrenergic disinhibition in the rat hippocampus. Neuron 6, 889–900 (1991)

    CAS  Article  Google Scholar 

  31. 31

    Atallah, B. V. & Scanziani, M. Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron 62, 566–577 (2009)

    CAS  Article  Google Scholar 

  32. 32

    Freund, T. F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996)

    CAS  Article  Google Scholar 

  33. 33

    Shu, Y., Hasenstaub, A., Duque, A., Yu, Y. & McCormick, D. A. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 441, 761–765 (2006)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Hippenmeyer, S. et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 3, e159 (2005)

    Article  Google Scholar 

  35. 35

    Ascoli, G. A., Gasparini, S., Medinilla, V. & Migliore, M. Local control of postinhibitory rebound spiking in CA1 pyramidal neuron dendrites. J. Neurosci. 30, 6434–6442 (2010)

    CAS  Article  Google Scholar 

  36. 36

    Hao, J., Wang, X. D., Dan, Y., Poo, M. M. & Zhang, X. H. An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons. Proc. Natl Acad. Sci. USA 106, 21906–21911 (2009)

    ADS  CAS  Article  Google Scholar 

Download references


We thank C. Földy for generous assistance with techniques for interneuron recording and classification, and thank Y. Li, M. Tadross, A. Mitra, D. Poburko, L. Prolo, J. Huguenard, S. Hestrin, D. Madison, L. Luo, K. Pelkey and K. Deisseroth for discussion and comments. This work was supported by the Burnett Family Fund, the Mosbacher Fund, and the Mathers Foundation, as well as grants from the National Institute of Mental Health (MH064070, MH071739), the National Institute of Neurological Disorders and Stroke (NS024067) and the Simons Foundation (95395). S.F.O. is supported by an NDSEG fellowship and by an NIMH-NRSA fellowship (F31MH084430). P.L.B. is supported by an SNSF and SFGBM fellowship (PASMP3_140063/1).

Author information




S.F.O. performed all experiments, analysis and modelling. S.N.T. and S.F.O. performed ChR2 experiments. P.L.B. and N.N.T. assisted with interpretation of results and long-term project direction. R.W.T. and G.F. oversaw experiments, analysis, modelling and project direction. S.F.O. and R.W.T. planned and designed experiments and wrote the paper.

Corresponding author

Correspondence to Richard W. Tsien.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-13. (PDF 3277 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Owen, S., Tuncdemir, S., Bader, P. et al. Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons. Nature 500, 458–462 (2013). https://doi.org/10.1038/nature12330

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing