Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An Sp1 transcription factor coordinates caspase-dependent and -independent apoptotic pathways

Abstract

During animal development, the proper regulation of apoptosis requires the precise spatial and temporal execution of cell-death programs, which can include both caspase-dependent and caspase-independent pathways1,2. Although the mechanisms of caspase-dependent and -independent cell killing have been examined extensively, how these pathways are coordinated within a single cell that is fated to die is unknown. Here we show that the Caenorhabditis elegans Sp1 transcription factor SPTF-3 specifies the programmed cell deaths of at least two cells—the sisters of the pharyngeal M4 motor neuron and the AQR sensory neuron—by transcriptionally activating both caspase-dependent and -independent apoptotic pathways. SPTF-3 directly drives the transcription of the gene egl-1, which encodes a BH3-only protein that promotes apoptosis through the activation of the CED-3 caspase3. In addition, SPTF-3 directly drives the transcription of the AMP-activated protein kinase-related gene pig-1, which encodes a protein kinase and functions in apoptosis of the M4 sister and AQR sister independently of the pathway that activates CED-3 (refs 4, 5). Thus, a single transcription factor controls two distinct cell-killing programs that act in parallel to drive apoptosis. Our findings reveal a bivalent regulatory node for caspase-dependent and -independent pathways in the regulation of cell-type-specific apoptosis. We propose that such nodes might act as features of a general mechanism for regulating cell-type-specific apoptosis and could be therapeutic targets for diseases involving the dysregulation of apoptosis through multiple cell-killing mechanisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: sptf-3 and pig-1 promote the death of the M4 sister cell.
Figure 2: pig-1 is a direct transcriptional target of SPTF-3 in the regulation of the death of the M4 sister cell.
Figure 3: sptf-3 directly drives egl-1 expression in the M4 sister.
Figure 4: SPTF-3 functions cell autonomously to promote apoptosis of the M4 sister and the AQR sister.

Similar content being viewed by others

References

  1. Fuchs, Y. & Steller, H. Programmed cell death in animal development and disease. Cell 147, 742–758 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yuan, J. & Kroemer, G. Alternative cell death mechanisms in development and beyond. Genes Dev. 24, 2592–2602 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Metzstein, M. M., Stanfield, G. M. & Horvitz, H. R. Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet. 14, 410–416 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. Cordes, S., Frank, C. A. & Garriga, G. The C. elegans MELK ortholog PIG-1 regulates cell size asymmetry and daughter cell fate in asymmetric neuroblast divisions. Development 133, 2747–2756 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. Denning, D. P., Hatch, V. & Horvitz, H. R. Programmed elimination of cells by caspase-independent cell extrusion in C. elegans. Nature 488, 226–230 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Avery, L. & Horvitz, H. R. A cell that dies during wild-type C. elegans development can function as a neuron in a ced-3 mutant. Cell 51, 1071–1078 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983)

    Article  CAS  PubMed  Google Scholar 

  8. Hirose, T., Galvin, B. D. & Horvitz, H. R. Six and Eya promote apoptosis through direct transcriptional activation of the proapoptotic BH3-only gene egl-1 in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 107, 15479–15484 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ulm, E. A., Sleiman, S. F. & Chamberlin, H. M. Developmental functions for the Caenorhabditis elegans Sp protein SPTF-3. Mech. Dev. 128, 428–441 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. Hengartner, M. O., Ellis, R. E. & Horvitz, H. R. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356, 494–499 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Yochem, J., Gu, T. & Han, M. A new marker for mosaic analysis in Caenorhabditis elegans indicates a fusion between hyp6 and hyp7, two major components of the hypodermis. Genetics 149, 1323–1334 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Maduro, M. & Pilgrim, D. Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics 141, 977–988 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith, C. C. T. et al. Necrostatin: a potentially novel cardioprotective agent? Cardiovasc. Drugs Ther. 21, 227–233 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. Rosenbaum, D. M. et al. Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J. Neurosci. Res. 88, 1569–1576 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hyman, B. T. & Yuan, J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nature Rev. Neurosci. 13, 395–406 (2012)

    Article  CAS  Google Scholar 

  16. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wicks, S. R., Yeh, R. T., Gish, W. R., Waterston, R. H. & Plasterk, R. H. Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nature Genet. 28, 160–164 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. Ercan, S. et al. X chromosome repression by localization of the C. elegans dosage compensation machinery to sites of transcription initiation. Nature Genet. 39, 403–408 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. Marson, A. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bailey, T. L. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bailey, T. L. & Gribskov, M. Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14, 48–54 (1998)

    Article  CAS  PubMed  Google Scholar 

  22. Beissbarth, T. & Speed, T. P. GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 20, 1464–1465 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Conradt, B. & Horvitz, H. R. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93, 519–529 (1998)

    Article  CAS  PubMed  Google Scholar 

  24. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Clark, S. G., Lu, X. & Horvitz, H. R. The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. Genetics 137, 987–997 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Herman, M. A., Vassilieva, L. L., Horvitz, H. R., Shaw, J. E. & Herman, R. K. The C. elegans gene lin-44, which controls the polarity of certain asymmetric cell divisions, encodes a Wnt protein and acts cell nonautonomously. Cell 83, 101–110 (1995)

    Article  CAS  PubMed  Google Scholar 

  27. Frøkjær-Jensen, C. et al. Single-copy insertion of transgenes in Caenorhabditis elegans. Nature Genet. 40, 1375–1383 (2008)

    Article  PubMed  Google Scholar 

  28. Andersen, E. C., Saffer, A. M. & Horvitz, H. R. Multiple levels of redundant processes inhibit Caenorhabditis elegans vulval cell fates. Genetics 179, 2001–2012 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Fire, J. Gaudet, C. Barbara and Y. Iino for reporter constructs used to observe cell-type-specific apoptosis; G. Garriga for pig-1 strains; the Caenorhabditis Genetic Center, which is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440) and the National BioResource project for strains; D. Denning, K. Boulias, A. Corrionero and H. Johnsen for comments about the manuscript; and members of the Horvitz laboratory for technical support and discussions. This work was supported by the Howard Hughes Medical Institute. T.H. was supported in part by the Ministry of Education, Science, Technology, Sports and Culture of Japan. H.R.H. is the David H. Koch Professor of Biology at the Massachusetts Institute of Technology and an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

T.H. and H.R.H. designed the experiments, analysed the data and wrote the manuscript. T.H. performed the experiments.

Corresponding author

Correspondence to H. Robert Horvitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-12 and Supplementary Tables 3-4 (see separate files for Supplementary-Tables 1-2). (PDF 4109 kb)

Supplementary Table 1

A list of SPTF-3-bound regions obtained from ChIP-seq experiments using the anti- SPTF-3 antibody N81. (XLSX 281 kb)

Supplementary Table 2

A list of SPTF-3-bound regions obtained from ChIP-seq experiments using the anti-SPTF-3 antibody M82. (XLSX 210 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirose, T., Horvitz, H. An Sp1 transcription factor coordinates caspase-dependent and -independent apoptotic pathways. Nature 500, 354–358 (2013). https://doi.org/10.1038/nature12329

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12329

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing