Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modulation of allostery by protein intrinsic disorder


Allostery is an intrinsic property of many globular proteins and enzymes that is indispensable for cellular regulatory and feedback mechanisms. Recent theoretical1 and empirical2 observations indicate that allostery is also manifest in intrinsically disordered proteins, which account for a substantial proportion of the proteome3,4. Many intrinsically disordered proteins are promiscuous binders that interact with multiple partners and frequently function as molecular hubs in protein interaction networks. The adenovirus early region 1A (E1A) oncoprotein is a prime example of a molecular hub intrinsically disordered protein5. E1A can induce marked epigenetic reprogramming of the cell within hours after infection, through interactions with a diverse set of partners that include key host regulators such as the general transcriptional coactivator CREB binding protein (CBP), its paralogue p300, and the retinoblastoma protein (pRb; also called RB1)6,7. Little is known about the allosteric effects at play in E1A–CBP–pRb interactions, or more generally in hub intrinsically disordered protein interaction networks. Here we used single-molecule fluorescence resonance energy transfer (smFRET) to study coupled binding and folding processes in the ternary E1A system. The low concentrations used in these high-sensitivity experiments proved to be essential for these studies, which are challenging owing to a combination of E1A aggregation propensity and high-affinity binding interactions. Our data revealed that E1A–CBP–pRb interactions have either positive or negative cooperativity, depending on the available E1A interaction sites. This striking cooperativity switch enables fine-tuning of the thermodynamic accessibility of the ternary versus binary E1A complexes, and may permit a context-specific tuning of associated downstream signalling outputs. Such a modulation of allosteric interactions is probably a common mechanism in molecular hub intrinsically disordered protein function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Folding of the intrinsically disordered protein E1A induced by binding to pRb and the TAZ2 domain of CBP/p300.
Figure 2: E1A–TAZ2–pRb ternary complex formation detected by ensemble fluorescence anisotropy.
Figure 3: E1A–TAZ2–pRb allosteric interactions probed using single-molecule fluorescence resonance energy transfer.
Figure 4: E1A functional complexity achieved through binding promiscuity.

Similar content being viewed by others


  1. Hilser, V. J. & Thompson, E. B. Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proc. Natl Acad. Sci. USA 104, 8311–8315 (2007)

    Article  CAS  ADS  Google Scholar 

  2. Garcia-Pino, A. et al. Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Cell 142, 101–111 (2010)

    Article  CAS  Google Scholar 

  3. Dyson, H. J. & Wright, P. E. Intrinsically unstructured proteins and their functions. Nature Rev. Mol. Cell Biol. 6, 197–208 (2005)

    Article  CAS  Google Scholar 

  4. Xie, H. et al. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 6, 1882–1898 (2007)

    Article  CAS  Google Scholar 

  5. Pelka, P., Ablack, J. N., Fonseca, G. J., Yousef, A. F. & Mymryk, J. S. Intrinsic structural disorder in adenovirus E1A: a viral molecular hub linking multiple diverse processes. J. Virol. 82, 7252–7263 (2008)

    Article  CAS  Google Scholar 

  6. Ferrari, R. et al. Epigenetic reprogramming by adenovirus e1a. Science 321, 1086–1088 (2008)

    Article  CAS  ADS  Google Scholar 

  7. Horwitz, G. A. et al. Adenovirus small e1a alters global patterns of histone modification. Science 321, 1084–1085 (2008)

    Article  CAS  ADS  Google Scholar 

  8. Uversky, V. N., Oldfield, C. J. & Dunker, A. K. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu. Rev. Biophys. 37, 215–246 (2008)

    Article  CAS  Google Scholar 

  9. Davey, N. E., Trave, G. & Gibson, T. J. How viruses hijack cell regulation. Trends Biochem. Sci. 36, 159–169 (2011)

    Article  CAS  Google Scholar 

  10. Berk, A. J. Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24, 7673–7685 (2005)

    Article  CAS  Google Scholar 

  11. Ferreon, J. C., Martinez-Yamout, M. A., Dyson, H. J. & Wright, P. E. Structural basis for subversion of cellular control mechanisms by the adenoviral E1A oncoprotein. Proc. Natl Acad. Sci. USA 106, 13260–13265 (2009)

    Article  CAS  ADS  Google Scholar 

  12. Liu, X. & Marmorstein, R. Structure of the retinoblastoma protein bound to adenovirus E1A reveals the molecular basis for viral oncoprotein inactivation of a tumor suppressor. Genes Dev. 21, 2711–2716 (2007)

    Article  CAS  Google Scholar 

  13. Ferreon, A. C. M., Moran, C. R., Gambin, Y. & Deniz, A. A. Single-molecule fluorescence studies of intrinsically disordered proteins. Methods Enzymol. 472, 179–204 (2010)

    Article  CAS  Google Scholar 

  14. Deniz, A. A., Mukhopadhyay, S. & Lemke, E. A. Single-molecule biophysics: at the interface of biology, physics and chemistry. J. R. Soc. Interface 5, 15–45 (2008)

    Article  CAS  Google Scholar 

  15. Lee, J.-O., Russo, A. A. & Pavletich, N. P. Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature 391, 859–865 (1998)

    Article  CAS  ADS  Google Scholar 

  16. Ferreon, A. C. M., Ferreon, J. C., Bolen, D. W. & Rösgen, J. Protein phase diagrams II: nonideal behavior of biochemical reactions in the presence of osmolytes. Biophys. J. 92, 245–256 (2007)

    Article  CAS  ADS  Google Scholar 

  17. Kuriyan, J. & Eisenberg, D. The origin of protein interactions and allostery in colocalization. Nature 450, 983–990 (2007)

    Article  CAS  ADS  Google Scholar 

  18. Heise, C. et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nature Med. 6, 1134–1139 (2000)

    Article  CAS  Google Scholar 

  19. Hilser, V. J. & Thompson, E. B. Intrinsic disorder as a mechanism to optimize allosteric coupling in proteins. Proc. Natl Acad. Sci. USA 104, 8311–8315 (2007)

    Article  CAS  ADS  Google Scholar 

  20. Cui, Q. & Karplus, M. Allostery and cooperativity revisited. Protein Sci. 17, 1295–1307 (2008)

    Article  CAS  Google Scholar 

  21. Wang, H.-G. H., Moran, E. & Yaciuk, P. E1A promotes association between p300 and pRB in multimeric complexes required for normal biological activity. J. Virol. 69, 7917–7924 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chan, H. M., Krstic-Demonacos, M., Smith, L., Demonacos, C. & La Thangue, N. B. Acetylation control of the retinoblastoma tumour-suppressor protein. Nature Cell Biol. 3, 667–674 (2001)

    Article  CAS  Google Scholar 

  23. Nguyen, D. X., Baglia, L. A., Huang, S.-M., Baker, C. M. & McCance, D. J. Acetylation regulates the differentiation-specific functions of the retinoblastoma protein. EMBO J. 23, 1609–1618 (2004)

    Article  CAS  Google Scholar 

  24. Koshland, D. E., Jr The structural basis of negative cooperativity: receptors and enzymes. Curr. Opin. Struct. Biol. 6, 757–761 (1996)

    Article  CAS  Google Scholar 

  25. Sang, N., Avantaggiati, M. L. & Giordano, A. Roles of p300, pocket proteins, and hTBP in E1A-mediated transcriptional regulation and inhibition of p53 transactivation activity. J. Cell. Biochem. 66, 277–285 (1997)

    Article  CAS  Google Scholar 

  26. Green, M., Panesar, N. K. & Loewenstein, P. M. The transcription-repression domain of the adenovirus E1A oncoprotein targets p300 at the promoter. Oncogene 27, 4446–4455 (2008)

    Article  CAS  Google Scholar 

  27. Motlagh, H. N. & Hilser, V. J. Agonism/antagonism switching in allosteric ensembles. Proc. Natl Acad. Sci. USA 109, 4134–4139 (2012)

    Article  CAS  ADS  Google Scholar 

  28. Modrek, B. & Lee, C. A genomic view of alternative splicing. Nature Genet. 30, 13–19 (2002)

    Article  CAS  Google Scholar 

  29. Lee, C. W., Ferreon, J. C., Ferreon, A. C. M., Arai, M. A. & Wright, P. E. Graded enhancement of p53 binding to CBP/p300 by multisite phosphorylation. Proc. Natl Acad. Sci. USA 107, 19290–19295 (2010)

    Article  CAS  ADS  Google Scholar 

  30. Ferreon, A. C. M., Gambin, Y., Lemke, E. A. & Deniz, A. A. Interplay of α-synuclein binding and conformational switching probed by single-molecule fluorescence. Proc. Natl Acad. Sci. USA 106, 5645–5650 (2009)

    Article  CAS  ADS  Google Scholar 

  31. Kadri, Z. et al. Direct binding of pRb/E2F-2 to GATA-1 regulates maturation and terminal cell division during erythropoiesis. PLoS Biol. 7, 1–15 (2009)

    Article  Google Scholar 

  32. Rösgen, J. & Hinz, H. J. Phase diagrams: a graphical representation of linkage relations. J. Mol. Biol. 328, 255–271 (2003)

    Article  Google Scholar 

Download references


We thank E. Manlapaz for technical support, A. Jansma and G. Bhabha for preparation of plasmid constructs, P. Haberz for mass spectrometry, and J. Dyson and M. Martinez-Yamout for discussions. This work was supported by grants GM066833 (A.A.D.) and CA96865 (P.E.W.) from the National Institutes of Health, and the Skaggs Institute for Chemical Biology.

Author information

Authors and Affiliations



A.C.M.F. and J.C.F. performed the experiments. A.C.M.F., J.C.F., P.E.W. and A.A.D. designed experiments, analysed data and wrote the manuscript.

Corresponding authors

Correspondence to Peter E. Wright or Ashok A. Deniz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-3 (summary of the experimentally-derived binding constants and the measured FRET efficiencies for different E1A dual-labelled samples in various ligation states) and Supplementary Figures 1-7 (representations of the ensemble and single-molecule ligand binding data, analyses and modelling). (PDF 2986 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreon, A., Ferreon, J., Wright, P. et al. Modulation of allostery by protein intrinsic disorder. Nature 498, 390–394 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing