Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Melting during late-stage rifting in Afar is hot and deep


Investigations of a variety of continental rifts and margins worldwide have revealed that a considerable volume of melt can intrude into the crust during continental breakup1,2,3,4,5,6,7,8, modifying its composition and thermal structure. However, it is unclear whether the cause of voluminous melt production at volcanic rifts is primarily increased mantle temperature or plate thinning1,2,8,9,10,11,12. Also disputed is the extent to which plate stretching or thinning is uniform or varies with depth with the entire continental lithospheric mantle potentially being removed before plate rupture13,14,15,16. Here we show that the extensive magmatism during rifting along the southern Red Sea rift in Afar, a unique region of sub-aerial transition from continental to oceanic rifting, is driven by deep melting of hotter-than-normal asthenosphere. Petrogenetic modelling shows that melts are predominantly generated at depths greater than 80 kilometres, implying the existence of a thick upper thermo-mechanical boundary layer in a rift system approaching the point of plate rupture. Numerical modelling of rift development shows that when breakup occurs at the slow extension rates observed in Afar, the survival of a thick plate is an inevitable consequence of conductive cooling of the lithosphere, even when the underlying asthenosphere is hot. Sustained magmatic activity during rifting in Afar thus requires persistently high mantle temperatures, which would allow melting at high pressure beneath the thick plate. If extensive plate thinning does occur during breakup it must do so abruptly at a late stage, immediately before the formation of the new ocean basin16.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the Dabbahu–Manda Hararo magmatic segment.
Figure 2: Trace-element compositions of mafic lavas from Afar.
Figure 3: Results of REE and rifting models.


  1. White, R. & McKenzie, D. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res. 94, 7685–7729 (1989)

    Article  ADS  Google Scholar 

  2. White, R. et al. Lower-crustal intrusion on the North Atlantic continental margin. Nature 452, 460–464 (2008)

    Article  ADS  CAS  Google Scholar 

  3. Hammond, J. O. S. et al. The nature of the crust beneath the Afar triple junction: evidence from receiver functions. Geochem. Geophys. Geosyst. 12, Q12004 (2011)

    Article  ADS  Google Scholar 

  4. Keranen, K., Klemperer, S. L. & Gloaguen, R. EAGLE Working Group. Three-dimensional seismic imaging of a protoridge axis in the Main Ethiopian rift. Geology 32, 949–952 (2004)

    Article  ADS  Google Scholar 

  5. Wright, T. J. et al. Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode. Nature 442, 291–294 (2006)

    Article  ADS  CAS  Google Scholar 

  6. Bastow, I. D., Pilidou, S., Kendall, J-M. & Stuart, G. W. Melt-induced seismic anisotropy and magma assisted rifting in Ethiopia: evidence from surface waves. Geochem. Geophys. Geosyst. 11, QOAB05 (2010)

    Article  Google Scholar 

  7. Thybo, H. & Nielsen, C. A. Magma-compensated crustal thinning in continental rift zones. Nature 457, 873–876 (2009)

    Article  ADS  CAS  Google Scholar 

  8. McKenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988)

    Article  ADS  CAS  Google Scholar 

  9. Nielsen, T. K. & Hopper, J. R. From rift to drift: mantle melting during continental breakup. Geochem. Geophys. Geosyst. 5, Q07003 (2004)

    Article  ADS  Google Scholar 

  10. Boutilier, R. R. & Keen, C. E. Small-scale convection and divergent plate boundaries. J. Geophys. Res. 104, 7389–7403 (1999)

    Article  ADS  Google Scholar 

  11. Armitage, J. J., Collier, J. S. & Minshull, T. A. The importance of rift history for volcanic margin formation. Nature 465, 913–917 (2010)

    Article  ADS  CAS  Google Scholar 

  12. Shillington, D. J. et al. Abrupt transition from magma-starved to magma-rich rifting in the eastern Black Sea. Geology 37, 7–10 (2009)

    Article  ADS  Google Scholar 

  13. Rychert, C. A. et al. Volcanism in the Afar Rift sustained by decompression melting with minimal plume influence. Nature Geosci. 5, 406–409 (2012)

    Article  ADS  CAS  Google Scholar 

  14. Huismans, R. & Beaumont, C. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature 473, 74–78 (2011)

    Article  ADS  CAS  Google Scholar 

  15. Esedo, R., van Wijk, J., Coblentz, D. & Meyer, R. Uplift prior to continental breakup: indication for removal of mantle lithosphere? Geosphere 8, 1078–1085 (2012)

    Article  ADS  Google Scholar 

  16. Bastow, I. D. & Keir, D. The protracted development of the continent–ocean transition in Afar. Nature Geosci. 4, 248–250 (2011)

    Article  ADS  CAS  Google Scholar 

  17. Hayward, N. J. & Ebinger, C. J. Variations in the along-axis segmentation of the Afar Rift system. Tectonics 15, 244–257 (1996)

    Article  ADS  Google Scholar 

  18. McKenzie, D. Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett. 40, 25–32 (1978)

    Article  ADS  Google Scholar 

  19. Rooney, T. O., Herzberg, C. & Bastow, I. D. Elevated mantle temperature beneath East Africa. Geology 40, 27–30 (2012)

    Article  ADS  CAS  Google Scholar 

  20. Ferguson, D. J. et al. Recent rift related volcanism in Afar, Ethiopia. Earth Planet. Sci. Lett. 292, 409–418 (2010)

    Article  ADS  CAS  Google Scholar 

  21. Pik, R., Deniel, C., Coulon, C., Yirgu, G. & Marty, B. Isotopic and trace element signatures of Ethiopian flood basalts: evidence for plume-lithosphere interactions. Geochim. Cosmochim. Acta 63, 2263–2779 (1999)

    Article  ADS  CAS  Google Scholar 

  22. Hoffman, C. et al. Timing of the Ethiopian flood basalt event and implications for plume birth and global change. Nature 389, 838–841 (1997)

    Article  ADS  Google Scholar 

  23. McKenzie, D. & O’Nions, K. G. Partial melt distributions from inversion of rare earth element concentrations. J. Petrol. 32, 1021–1091 (1991)

    Article  ADS  CAS  Google Scholar 

  24. Herzberg, C. et al. Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochem. Geophys. Geosyst. 8, Q02006 (2007)

    Article  ADS  Google Scholar 

  25. Eagles, G., Gloaguen, R. & Ebinger, C. J. Kinematics of the Danakil microplate. Earth Planet. Sci. Lett. 203, 607–620 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Wolfenden, E., Ebinger, C., Yirgu, G., Renne, P. R. & Kelley, S. P. Evolution of a volcanic rifted margin: southern Red Sea, Ethiopia. Geol. Soc. Am. Bull. 117, 846–864 (2005)

    Article  ADS  Google Scholar 

  27. Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405–412 (2003)

    Article  ADS  CAS  Google Scholar 

  28. Jarvis, G. T. & McKenzie, D. Sedimentary formation with finite extension rates. Earth Planet. Sci. Lett. 48, 42–52 (1980)

    Article  ADS  Google Scholar 

  29. Bown, J. W. & White, R. S. Effect of finite extension rate on melt generation at rifted continental margins. J. Geophys. Res. 100, 18011–18029 (1995)

    Article  ADS  Google Scholar 

  30. Lee, C.-T. A., Luffi, P., Plank, T., Dalton, H. & Leeman, W. P. Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet. Sci. Lett. 279, 20–33 (2009)

    Article  ADS  CAS  Google Scholar 

  31. Le Roux, V., Lee, C.-T. A. & Turner, S. J. Zn/Fe systematics in mafic and ultramafic systems: implications for detecting major element heterogeneities in the Earth’s mantle. Geochim. Cosmochim. Acta 74, 2779–2796 (2010)

    Article  ADS  CAS  Google Scholar 

  32. Canil, D. Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet. Sci. Lett. 195, 75–90 (2002)

    Article  ADS  CAS  Google Scholar 

  33. Kress, V. C. & Carmichael, S. E. The compressibility of silicate liquids containing Fe203 and the effect of composition, temperature oxygen fugacity and pressure on their redox states. Contrib. Mineral. Petrol. 108, 82–92 (1991)

    Article  ADS  CAS  Google Scholar 

  34. Field, L. et al. Integrated field, satellite and petrological observations of the November 2010 eruption of Erta Ale. Bull. Volcanol. 74, 2251–2271 (2012)

    Article  ADS  Google Scholar 

  35. Asimow, P. & Longhi, J. The significance of multiple saturation points in the context of polybaric near-fractional melting. J. Petrol. 45, 2349–2367 (2004)

    Article  ADS  CAS  Google Scholar 

  36. Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005)

    Article  ADS  CAS  Google Scholar 

  37. McDonough, W. F. & Sun, S.-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    Article  ADS  CAS  Google Scholar 

  38. White, R. S., McKenzie, D. & O'Nions, R. K. Oceanic crustal thickness from seismic measurements and rare earth element inversions. J. Geophys. Res. 97, 19683–19715 (1992)

    Article  ADS  Google Scholar 

  39. Gibson, S. A. & Geist, D. Geochemical and geophysical estimates of lithospheric thickness variation beneath Galápagos. Earth Planet. Sci. Lett. 300, 275–286 (2010)

    Article  ADS  CAS  Google Scholar 

  40. Robinson, J. A. C. & Wood, B. J. The depth of the spinel to garnet transition at the peridotite solidus. Earth Planet. Sci. Lett. 164, 277–284 (1998)

    Article  ADS  CAS  Google Scholar 

  41. Kojitani, H. & Akaogi, M. Melting enthalpies of mantle peridotite: calorimetric determinations in the system CaO-MgO-Al2O3-SiO2 and application to magma generation. Earth Planet. Sci. Lett. 153, 209–222 (1997)

    Article  ADS  CAS  Google Scholar 

  42. White, N. & Bellingham, P. A two-dimensional inverse model for extensional sedimentary basins. 1. Theory. J. Geophys. Res. 107, 2259 (2002)

    ADS  Google Scholar 

Download references


We acknowledge help and support by members of the NERC Afar Rift Consortium. This project was supported by a NERC consortium grant. D.J.F. acknowledges support from a LDEO postdoctoral fellowship.

Author information

Authors and Affiliations



D.J.F., D.M.P., J.D.B. and G.Y. planned the project and conducted fieldwork in Afar. Geochemical analysis and modelling was by D.J.F., J.M., D.M.P., J.D.B. and T.P. and S.M.J. did the numerical rifting model. D.J.F. took the lead in writing the manuscript with contributions from I.D.B., J.M., D.K., S.M.J. and others.

Corresponding author

Correspondence to D. J. Ferguson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-3. (PDF 114 kb)

Supplementary Data

This file contains 2 tables of geochemical data. (XLSX 61 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferguson, D., Maclennan, J., Bastow, I. et al. Melting during late-stage rifting in Afar is hot and deep. Nature 499, 70–73 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing