Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MBNL proteins repress ES-cell-specific alternative splicing and reprogramming

Abstract

Previous investigations of the core gene regulatory circuitry that controls the pluripotency of embryonic stem (ES) cells have largely focused on the roles of transcription, chromatin and non-coding RNA regulators1,2,3. Alternative splicing represents a widely acting mode of gene regulation4,5,6,7,8, yet its role in regulating ES-cell pluripotency and differentiation is poorly understood. Here we identify the muscleblind-like RNA binding proteins, MBNL1 and MBNL2, as conserved and direct negative regulators of a large program of cassette exon alternative splicing events that are differentially regulated between ES cells and other cell types. Knockdown of MBNL proteins in differentiated cells causes switching to an ES-cell-like alternative splicing pattern for approximately half of these events, whereas overexpression of MBNL proteins in ES cells promotes differentiated-cell-like alternative splicing patterns. Among the MBNL-regulated events is an ES-cell-specific alternative splicing switch in the forkhead family transcription factor FOXP1 that controls pluripotency9. Consistent with a central and negative regulatory role for MBNL proteins in pluripotency, their knockdown significantly enhances the expression of key pluripotency genes and the formation of induced pluripotent stem cells during somatic cell reprogramming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of regulators of ES-cell-differential alternative splicing.
Figure 2: MBNL proteins regulate ES-cell-specific alternative splicing.
Figure 3: MBNL proteins regulate approximately half of ES-cell-differential alternative splicing events.
Figure 4: Knockdown of MBNL proteins enhances reprogramming efficiency and kinetics.

Similar content being viewed by others

Accession codes

Data deposits

GEO accession numbers are provided in Supplementary Table 1.

References

  1. Young, R. A. Control of the embryonic stem cell state. Cell 144, 940–954 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rinn, J. L. & Chang, H. Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145–166 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. Bao, X. et al. MicroRNAs in somatic cell reprogramming. Curr. Opin. Cell Biol. 25, 208–214 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genet. 40, 1413–1415 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Braunschweig, U., Gueroussov, S., Plocik, A. M., Graveley, B. R. & Blencowe, B. J. Dynamic integration of splicing within gene regulatory pathways. Cell 152, 1252–1269 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nilsen, T. W. & Graveley, B. R. Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kalsotra, A. & Cooper, T. A. Functional consequences of developmentally regulated alternative splicing. Nature Rev. Genet. 12, 715–729 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. Gabut, M. et al. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell 147, 132–146 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S. H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. Silva, J. et al. Nanog is the gateway to the pluripotent ground state. Cell 138, 722–737 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Irimia, M. & Blencowe, B. J. Alternative splicing: decoding an expansive regulatory layer. Curr. Opin. Cell Biol. 24, 323–332 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. Rao, S. et al. Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Mol. Cell. Biol. 30, 5364–5380 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Salomonis, N. et al. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc. Natl Acad. Sci. USA 107, 10514–10519 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mayshar, Y. et al. Fibroblast growth factor 4 and its novel splice isoform have opposing effects on the maintenance of human embryonic stem cell self-renewal. Stem Cells 26, 767–774 (2008)

    Article  CAS  PubMed  Google Scholar 

  17. Barash, Y. et al. Deciphering the splicing code. Nature 465, 53–59 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Liang, J. et al. Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nature Cell Biol. 10, 731–739 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Lian, I. et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 24, 1106–1118 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, E. T. et al. Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 150, 710–724 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Charizanis, K. et al. Muscleblind-like 2-mediated alternative splicing in the developing brain and dysregulation in myotonic dystrophy. Neuron 75, 437–450 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pascual, M., Vicente, M., Monferrer, L. & Artero, R. The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing. Differentiation 74, 65–80 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fernandez-Costa, J. M., Llamusi, M. B., Garcia-Lopez, A. & Artero, R. Alternative splicing regulation by Muscleblind proteins: from development to disease. Biol. Rev. Camb. Philos. Soc. 86, 947–958 (2011)

    Article  PubMed  Google Scholar 

  25. Woltjen, K. et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766–770 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. Golipour, A. et al. A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network. Cell Stem Cell 11, 769–782 (2012)

    Article  CAS  PubMed  Google Scholar 

  28. Samavarchi-Tehrani, P. et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7, 64–77 (2010)

    Article  CAS  PubMed  Google Scholar 

  29. Calarco, J. A. et al. Global analysis of alternative splicing differences between humans and chimpanzees. Genes Dev. 21, 2963–2975 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Labbé, R. M. et al. A comparative transcriptomic analysis reveals conserved features of stem cell pluripotency in planarians and mammals. Stem Cells 30, 1734–1745 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gabut, M. et al. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell 147, 132–146 (2011)

    Article  CAS  PubMed  Google Scholar 

  32. Polo, J. M. & Hochedlinger, K. When fibroblasts MET iPSCs. Cell Stem Cell 7, 5–6 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. Samavarchi-Tehrani, P. et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7, 64–77 (2010)

    Article  CAS  PubMed  Google Scholar 

  34. Golipour, A. et al. A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network. Cell Stem Cell 11, 769–782 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. Hotta, A. et al. EOS lentiviral vector selection system for human induced pluripotent stem cells. Nature Protocols 4, 1828–1844 (2009)

    Article  CAS  PubMed  Google Scholar 

  36. Hotta, A. et al. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nature Methods 6, 370–376 (2009)

    Article  CAS  PubMed  Google Scholar 

  37. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007)

    Article  CAS  PubMed  Google Scholar 

  38. Cheung, A. Y. et al. Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum. Mol. Genet. 20, 2103–2115 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Labbé, R. M. et al. A comparative transcriptomic analysis reveals conserved features of stem cell pluripotency in planarians and mammals. Stem Cells 30, 1734–1745 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Xiong, H. Y., Barash, Y. & Frey, B. J. Bayesian prediction of tissue-regulated splicing using RNA sequence and cellular context. Bioinformatics 27, 2554–2562 (2011)

    Article  CAS  PubMed  Google Scholar 

  41. Wang, E. T. et al. Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 150, 710–724 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Irimia, M., Rukov, J. L., Roy, S. W., Vinther, J. & Garcia-Fernandez, J. Quantitative regulation of alternative splicing in evolution and development. Bioessays 31, 40–50 (2009)

    Article  PubMed  Google Scholar 

  44. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4, 44–57 (2009)

    Article  CAS  Google Scholar 

  45. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank U. Braunschweig, J. Ellis, S. Gueroussov and B. Raj for comments on the manuscript. We acknowledge D. Torti in the Donnelly Sequencing Centre for sequencing samples; L. Lee for assisting with the splicing code analysis; J. Garner (Hospital for Sick Children Embryonic Stem Cell Facility) for preparing feeder cells; A. Piekna for morphological examination of human iPSC colonies; M. Narimatsu for assisting with chimaerism analysis; and P. Mero for assisting with cell imaging. This work was supported by grants from the Canadian Institutes of Health Research (CIHR) (to B.J.B., J.L.W., A.N., J.E. and B.J.F.), the Ontario Research Fund (to J.L.W., B.J.B., A.N. and others), the Canadian Stem Cell Network (to A.N. and B.J.B.), and by a grant from the National Institutes of Health (R33MH087908) to J.E. H.H. was supported by a University of Toronto Open Fellowship. P.J.R., M.I. and N.L.B.-M. were supported by postdoctoral fellowships from the Ontario Stem Cell Initiative, Human Frontiers Science Program Organization, and the Marie Curie Actions, respectively.

Author information

Authors and Affiliations

Authors

Contributions

H.H. performed experiments in Figs 14 and Supplementary Figs 2–9 and 11–13. M.I. performed bioinformatic analyses in Figs 14 and Supplementary Figs 1, 3, 7, 10 and 14, with input from N.L.B.-M. L.D. and A.G. assisted with secondary MEF reprogramming experiments and clone characterization, and D.T. generated secondary MEF lines and performed chimaerism testing. P.J.R., T.T. and M.G. performed human reprogramming experiments and iPSC characterization. H-K.S. performed teratoma assays. B.A. and B.J.F. generated splicing code data. I.P.M., H.-K.S. and D.O. assisted with ES-cell overexpression and differentiation experiments. E.W. and C.B.B. generated and analysed CLIP-seq data. E.N.N. and V.S. performed RT–PCR validation experiments. B.J.B., H.H. and M.I. designed the study, with input from J.L.W., J.E., A.N. and J.M. B.J.B., H.H. and M.I. wrote the manuscript, with input from the other authors.

Corresponding author

Correspondence to Benjamin J. Blencowe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary References, full legends for Supplementary Tables 1-5 and Supplementary Figures 1-15. (PDF 8925 kb)

Supplementary Table 1

This file contains information on RNA-Seq datasets and samples – see Supplementary Information for full legend. (XLSX 48 kb)

Supplementary Table 2

This file contains information on Human and mouse ESC-differential AS events - Supplementary Information for full legend. (XLSX 195 kb)

Supplementary Table 3

This file contains DAVID (http://david.abcc.ncifcrf.gov/) output for functional enrichment categories for human, mouse or conserved ESC-differential AS events – see Supplementary Information for full legend. (XLSX 168 kb)

Supplementary Table 4

This file contains expression levels of the human and mouse splicing factors analyzed by RNA-Seq - see Supplementary Information for full legend. (XLSX 199 kb)

Supplementary Table 5

This file contains information on mouse ESC-differential AS events plotted in Supplementary Figure 14- see Supplementary Information for full legend. (XLSX 63 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, H., Irimia, M., Ross, P. et al. MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature 498, 241–245 (2013). https://doi.org/10.1038/nature12270

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12270

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing