Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transport dynamics in a glutamate transporter homologue

Abstract

Glutamate transporters are integral membrane proteins that catalyse neurotransmitter uptake from the synaptic cleft into the cytoplasm of glial cells and neurons1. Their mechanism of action involves transitions between extracellular (outward)-facing and intracellular (inward)-facing conformations, whereby substrate binding sites become accessible to either side of the membrane2. This process has been proposed to entail transmembrane movements of three discrete transport domains within a trimeric scaffold3. Using single-molecule fluorescence resonance energy transfer (smFRET) imaging4, we have directly observed large-scale transport domain movements in a bacterial homologue of glutamate transporters. We find that individual transport domains alternate between periods of quiescence and periods of rapid transitions, reminiscent of bursting patterns first recorded in single ion channels using patch-clamp methods5,6. We propose that the switch to the dynamic mode in glutamate transporters is due to separation of the transport domain from the trimeric scaffold, which precedes domain movements across the bilayer. This spontaneous dislodging of the substrate-loaded transport domain is approximately 100-fold slower than subsequent transmembrane movements and may be rate determining in the transport cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FRET efficiency changes reflect relative orientations of the transport domains.
Figure 2: Dynamics in the apo and substrate bound transporter.
Figure 3: Na+ ions and Asp favour the outward facing state.
Figure 4: Modulation of dynamics by substrate and inhibitor binding.

Similar content being viewed by others

References

  1. Danbolt, N. C. Glutamate uptake. Prog. Neurobiol. 65, 1–105 (2001)

    Article  CAS  Google Scholar 

  2. Krishnamurthy, H., Piscitelli, C. L. & Gouaux, E. Unlocking the molecular secrets of sodium-coupled transporters. Nature 459, 347–355 (2009)

    Article  ADS  CAS  Google Scholar 

  3. Reyes, N., Ginter, C. & Boudker, O. Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462, 880–885 (2009)

    Article  ADS  CAS  Google Scholar 

  4. Weiss, S. Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999)

    Article  ADS  CAS  Google Scholar 

  5. Sakmann, B., Patlak, J. & Neher, E. Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature 286, 71–73 (1980)

    Article  ADS  CAS  Google Scholar 

  6. Cull-Candy, S. G. & Parker, I. Rapid kinetics of single glutamate-receptor channels. Nature 295, 410–412 (1982)

    Article  ADS  CAS  Google Scholar 

  7. Tzingounis, A. V. & Wadiche, J. I. Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nature Rev. Neurosci. 8, 935–947 (2007)

    Article  CAS  Google Scholar 

  8. Zerangue, N. & Kavanaugh, M. P. Flux coupling in a neuronal glutamate transporter. Nature 383, 634–637 (1996)

    Article  ADS  CAS  Google Scholar 

  9. Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431, 811–818 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Boudker, O. et al. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445, 387–393 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Boudker, O. & Verdon, G. Structural perspectives on secondary active transporters. Trends Pharmacol. Sci. 31, 418–426 (2010)

    Article  CAS  Google Scholar 

  12. Ryan, R. M., Compton, E. L. & Mindell, J. A. Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii. J. Biol. Chem. 284, 17540–17548 (2009)

    Article  CAS  Google Scholar 

  13. Blanchard, S. C. Single-molecule observations of ribosome function. Curr. Opin. Struct. Biol. 19, 103–109 (2009)

    Article  CAS  Google Scholar 

  14. Groeneveld, M. & Slotboom, D. J. Rigidity of the subunit interfaces of the trimeric glutamate transporter GltT during translocation. J. Mol. Biol. 372, 565–570 (2007)

    Article  CAS  Google Scholar 

  15. Reyes, N., Oh, S. & Boudker, O. Binding thermodynamics of a glutamate transporter homolog. Nature Struct. Mol. Biol. 20, 634–640 (2013)

    Article  CAS  Google Scholar 

  16. Groeneveld, M. & Slotboom, D. J. Na+:aspartate coupling stoichiometry in the glutamate transporter homologue GltPh . Biochemistry 49, 3511–3513 (2010)

    Article  CAS  Google Scholar 

  17. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nature Methods 5, 507–516 (2008)

    Article  CAS  Google Scholar 

  18. Dave, R., Terry, D. S., Munro, J. B. & Blanchard, S. C. Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. Biophys. J. 96, 2371–2381 (2009)

    Article  ADS  CAS  Google Scholar 

  19. Verdon, G. & Boudker, O. Crystal structure of an asymmetric trimer of a bacterial glutamate transporter homolog. Nature Struct. Mol. Biol. 19, 355–357 (2012)

    Article  CAS  Google Scholar 

  20. McKinney, S. A., Joo, C. & Ha, T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91, 1941–1951 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Grewer, C. et al. Individual subunits of the glutamate transporter EAAC1 homotrimer function independently of each other. Biochemistry 44, 11913–11923 (2005)

    Article  CAS  Google Scholar 

  22. Shimamoto, K. et al. dl-threo-β-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Mol. Pharmacol. 53, 195–201 (1998)

    Article  CAS  Google Scholar 

  23. Liu, S., Bokinsky, G., Walter, N. G. & Zhuang, X. Dissecting the multistep reaction pathway of an RNA enzyme by single-molecule kinetic “fingerprinting”. Proc. Natl Acad. Sci. USA 104, 12634–12639 (2007)

    Article  ADS  CAS  Google Scholar 

  24. Stolzenberg, S., Khelashvili, G. & Weinstein, H. Structural intermediates in a model of the substrate translocation path of the bacterial glutamate transporter homologue GltPh . J. Phys. Chem. B 116, 5372–5383 (2012)

    Article  CAS  Google Scholar 

  25. Fairman, W. A. et al. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375, 599–603 (1995)

    Article  ADS  CAS  Google Scholar 

  26. Wadiche, J. I., Amara, S. G. & Kavanaugh, M. P. Ion fluxes associated with excitatory amino acid transport. Neuron 15, 721–728 (1995)

    Article  CAS  Google Scholar 

  27. Grewer, C., Watzke, N., Wiessner, M. & Rauen, T. Glutamate translocation of the neuronal glutamate transporter EAAC1 occurs within milliseconds. Proc. Natl Acad. Sci. USA 97, 9706–9711 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Otis, T. S. & Kavanaugh, M. P. Isolation of current components and partial reaction cycles in the glial glutamate transporter EAAT2. J. Neurosci. 20, 2749–2757 (2000)

    Article  CAS  Google Scholar 

  29. Blanchard, S. C. et al. tRNA dynamics on the ribosome during translation. Proc. Natl Acad. Sci. USA 101, 12893–12898 (2004)

    Article  ADS  CAS  Google Scholar 

  30. Zhao, Y. et al. Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature 465, 188–193 (2010)

    Article  ADS  CAS  Google Scholar 

  31. Munro, J. B., Altman, R. B., O’Connor, N. & Blanchard, S. C. Identification of two distinct hybrid state intermediates on the ribosome. Mol. Cell 25, 505–517 (2007)

    Article  CAS  Google Scholar 

  32. Qin, F., Auerbach, A. & Sachs, F. A direct optimization approach to hidden Markov modeling for single channel kinetics. Biophys. J. 79, 1915–1927 (2000)

    Article  CAS  Google Scholar 

  33. Qin, F. Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling. Biophys. J. 86, 1488–1501 (2004)

    Article  ADS  CAS  Google Scholar 

  34. Motulsky, H. & Christopoulos, A. Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting 256–311 (Oxford Univ. Press, 2004)

    MATH  Google Scholar 

  35. Sigworth, F. J. & Sine, S. M. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys. J. 52, 1047–1054 (1987)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank D. S. Terry for his help with the design of smFRET experiments and discussions; Z. Zhou for the synthesis of cyanine fluorophores; E. Georgieva for initial biochemical characterization of the single-cysteine mutants; G. Verdon, A. Accardi and N. Reyes for helpful discussions and comments on the manuscript. The work was supported in part by the National Institute of Health grants 5U54GM087519 and R01NS064357.

Author information

Authors and Affiliations

Authors

Contributions

N.A. purified GltPh mutants, carried out the experiments and analysed the data. R.B.A. prepared reagents for smFRET experiments. N.A., O.B. and S.C.B. together designed, analysed and interpreted the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Scott C. Blanchard or Olga Boudker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information file contains Supplementary Figures 1-10, Supplementary Methods, Supplementary Tables 1-2, Supplementary Discussion and Supplementary References. (PDF 3709 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akyuz, N., Altman, R., Blanchard, S. et al. Transport dynamics in a glutamate transporter homologue. Nature 502, 114–118 (2013). https://doi.org/10.1038/nature12265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12265

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing