Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biomimetic assembly and activation of [FeFe]-hydrogenases

Abstract

Hydrogenases are the most active molecular catalysts for hydrogen production and uptake1,2, and could therefore facilitate the development of new types of fuel cell3,4,5. In [FeFe]-hydrogenases, catalysis takes place at a unique di-iron centre (the [2Fe] subsite), which contains a bridging dithiolate ligand, three CO ligands and two CN ligands6,7. Through a complex multienzymatic biosynthetic process, this [2Fe] subsite is first assembled on a maturation enzyme, HydF, and then delivered to the apo-hydrogenase for activation8. Synthetic chemistry has been used to prepare remarkably similar mimics of that subsite1, but it has failed to reproduce the natural enzymatic activities thus far. Here we show that three synthetic mimics (containing different bridging dithiolate ligands) can be loaded onto bacterial Thermotoga maritima HydF and then transferred to apo-HydA1, one of the hydrogenases of Chlamydomonas reinhardtii algae. Full activation of HydA1 was achieved only when using the HydF hybrid protein containing the mimic with an azadithiolate bridge, confirming the presence of this ligand in the active site of native [FeFe]-hydrogenases9,10. This is an example of controlled metalloenzyme activation using the combination of a specific protein scaffold and active-site synthetic analogues. This simple methodology provides both new mechanistic and structural insight into hydrogenase maturation and a unique tool for producing recombinant wild-type and variant [FeFe]-hydrogenases, with no requirement for the complete maturation machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of the di-iron clusters discussed in the study.
Figure 2: Normalized FTIR spectra recorded in liquid solution at 15 °C.
Figure 3: Continuous wave and pulsed EPR spectra of 1–HydF.
Figure 4: Specific hydrogenase activity of reconstituted HydA1.

Similar content being viewed by others

References

  1. Tard, C. & Pickett, C. J. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem. Rev. 109, 2245–2274 (2009)

    Article  CAS  Google Scholar 

  2. Cracknell, J. A., Vincent, K. A. & Armstrong, F. A. Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem. Rev. 108, 2439–2461 (2008)

    Article  CAS  Google Scholar 

  3. Hambourger, M. et al. [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell. J. Am. Chem. Soc. 130, 2015–2022 (2008)

    Article  CAS  Google Scholar 

  4. Krishnan, S. & Armstrong, F. A. Order-of-magnitude enhancement of an enzymatic hydrogen-air fuel cell based on pyrenyl carbon nanostructures. Chem. Sci. 3, 1015–1023 (2012)

    Article  CAS  Google Scholar 

  5. Ciaccafava, A. et al. An innovative powerful and mediatorless H2/O2 biofuel cell based on an outstanding bioanode. Electrochem. Commun. 23, 25–28 (2012)

    Article  CAS  Google Scholar 

  6. Peters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282, 1853–1858 (1998)

    Article  CAS  ADS  Google Scholar 

  7. Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla-Camps, J. C. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7, 13–23 (1999)

    Article  CAS  Google Scholar 

  8. Mulder, D. W. et al. Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydAΔEFG. Nature 465, 248–251 (2010)

    Article  CAS  ADS  Google Scholar 

  9. Nicolet, Y. et al. Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. J. Am. Chem. Soc. 123, 1596–1601 (2001)

    Article  CAS  Google Scholar 

  10. Silakov, A., Wenk, B., Reijerse, E. & Lubitz, W. 14N HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge. Phys. Chem. Chem. Phys. 11, 6592–6599 (2009)

    Article  CAS  Google Scholar 

  11. Le Cloirec, A. et al. A di-iron dithiolate possessing structural elements of the carbonyl/cyanide sub-site of the H-centre of Fe-only hydrogenase. Chem. Commun. 2285–2286 (1999)

  12. Lyon, E. J., Georgakaki, I. P., Reibenspies, J. H. & Darensbourg, M. Y. Carbon monoxide and cyanide ligands in a classical organometallic complex model for Fe-only hydrogenase. Angew. Chem. Int. Edn Engl. 38, 3178–3180 (1999)

    Article  CAS  Google Scholar 

  13. Schmidt, M., Contakes, S. M. & Rauchfuss, T. B. First generation analogues of the binuclear site in the Fe-only hydrogenases: [Fe2(µ-SR)2(CO)4(CN)2 ]2–. J. Am. Chem. Soc. 121, 9736–9737 (1999)

    Article  CAS  Google Scholar 

  14. Li, H. X. & Rauchfuss, T. B. Iron carbonyl sulfides, formaldehyde, and amines condense to give the proposed azadithiolate cofactor of the Fe-only hydrogenases. J. Am. Chem. Soc. 124, 726–727 (2002)

    Article  CAS  Google Scholar 

  15. Song, L. C., Yang, Z. Y., Bian, H. Z. & Hu, Q. M. Novel single and double diiron oxadithiolates as models for the active site of [Fe]-only hydrogenases. Organometallics 23, 3082–3084 (2004)

    Article  CAS  Google Scholar 

  16. Pandey, A. S., Harris, T. V., Giles, L. J., Peters, J. W. & Szilagyi, R. K. Dithiomethylether as a ligand in the hydrogenase H-cluster. J. Am. Chem. Soc. 130, 4533–4540 (2008)

    Article  CAS  Google Scholar 

  17. Brazzolotto, X. et al. The [Fe-Fe]-hydrogenase maturation protein HydF from Thermotoga maritima is a GTPase with an iron-sulfur cluster. J. Biol. Chem. 281, 769–774 (2006)

    Article  CAS  Google Scholar 

  18. Adamska, A. et al. Identification and characterization of the “super-reduced” state of the H-cluster in [FeFe] hydrogenase: a new building block for the catalytic cycle? Angew. Chem. Int. Ed. 51, 11458–11462 (2012)

    Article  CAS  Google Scholar 

  19. Czech, I., Silakov, A., Lubitz, W. & Happe, T. The [FeFe]-hydrogenase maturase HydF from Clostridium acetobutylicum contains a CO and CN ligated iron cofactor. FEBS Lett. 584, 638–642 (2010)

    Article  CAS  Google Scholar 

  20. Geiss, A. & Vahrenkamp, H. M. (µ-CN)Fe(µ-CN)M' chains with phthalocyanine iron centers: preparation, structures, and isomerization. Inorg. Chem. 39, 4029–4036 (2000)

    Article  CAS  Google Scholar 

  21. Hubrich, M., Jeschke, G. & Schweiger, A. The generalized hyperfine sublevel coherence transfer experiment in one and two dimensions. J. Chem. Phys. 104, 2172–2184 (1996)

    Article  CAS  ADS  Google Scholar 

  22. Gambarelli, S., Luttringer, F., Padovani, D., Mulliez, E. & Fontecave, M. Activation of the anaerobic ribonucleotide reductase by S-adenosylmethionine. ChemBioChem 6, 1960–1962 (2005)

    Article  CAS  Google Scholar 

  23. Chen, D. W., Walsby, C., Hoffman, B. M. & Frey, P. A. Coordination and mechanism of reversible cleavage of S-adenosylmethionine by the [4Fe-4S] center in lysine 2,3-aminomutase. J. Am. Chem. Soc. 125, 11788–11789 (2003)

    Article  CAS  Google Scholar 

  24. Coronado, E. et al. Pressure-tuning of magnetism and linkage isomerism in iron(II) hexacyanochromate. J. Am. Chem. Soc. 127, 4580–4581 (2005)

    Article  CAS  Google Scholar 

  25. Shatruk, M. et al. Properties of Prussian blue materials manifested in molecular complexes: observation of cyanide linkage isomerism and spin-crossover behavior in pentanuclear cyanide clusters. J. Am. Chem. Soc. 129, 6104–6116 (2007)

    Article  CAS  Google Scholar 

  26. Happe, T. & Naber, J. D. Isolation, characterization and N-terminal amino-acid-sequence of hydrogenase from the green-alga Chlamydomonas reinhardtii. Eur. J. Biochem. 214, 475–481 (1993)

    Article  CAS  Google Scholar 

  27. Kamp, C. et al. Isolation and first EPR characterization of the [FeFe]-hydrogenases from green algae. Biochim. Biophys. Acta Bioenerg. 1777, 410–416 (2008)

    Article  CAS  Google Scholar 

  28. Sybirna, K. et al. Shewanella oneidensis: a new and efficient system for expression and maturation of heterologous [Fe-Fe] hydrogenase from Chlamydomonas reinhardtii. BMC Biotechnol. 8, 73–81 (2008)

    Article  Google Scholar 

  29. Darensbourg, M. Y., Lyon, E. J., Zhao, X. & Georgakaki, I. P. The organometallic active site of [Fe] hydrogenase: models and entatic states. Proc. Natl Acad. Sci. USA 100, 3683–3688 (2003)

    Article  CAS  ADS  Google Scholar 

  30. Mertens, R. & Liese, A. Biotechnological applications of hydrogenases. Curr. Opin. Biotechnol. 15, 343–348 (2004)

    Article  CAS  Google Scholar 

  31. Fiedler, A. T. & Brunold, T. C. Combined spectroscopic/computational study of binuclear Fe(I)-Fe(I) complexes: implications for the fully-reduced active-site cluster of Fe-only hydrogenases. Inorg. Chem. 44, 1794–1809 (2005)

    Article  CAS  Google Scholar 

  32. Kuchenreuther, J. M. et al. High-yield expression of heterologous [FeFe] hydrogenases in Escherichia coli. PLoS ONE 5, e15491 (2010)

    Article  ADS  Google Scholar 

  33. Fish, W. W. Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples. Methods Enzymol. 158, 357–364 (1988)

    Article  CAS  Google Scholar 

  34. Beinert, H. Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron sulfur proteins. Anal. Biochem. 131, 373–378 (1983)

    Article  CAS  Google Scholar 

  35. Hemschemeier, A., Melis, A. & Happe, T. Analytical approaches to photobiological hydrogen production in unicellular green algae. Photosynth. Res. 102, 523–540 (2009)

    Article  CAS  Google Scholar 

  36. Stripp, S. T. et al. How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc. Natl Acad. Sci. USA 106, 17331–17336 (2009)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

G.B. acknowledges support from the Bengt Lundqvist Minnesfond, FORMAS (contract number 213-2010-563) and the Swedish Royal Academy of Sciences. This work was supported by the French National Research Agency (ANR) through grant 07-BLAN-0298-01 and the Labex programme (ARCANE, 11-LABX-003). V.A. acknowledges support from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013/ERC Grant Agreement no. 306398). T.H. was supported by the Deutsche Forschungsgemeinschaft (HA 255/2-1), the BMBF (Bio-H2) and the Volkswagen foundation (LigH2t). A.A., E.R. and W.L. thank the Max Planck Society for financial support, and A. Silakov for providing the FTIR processing software.

Author information

Authors and Affiliations

Authors

Contributions

G.B., V.A., M.A., W.L., T.H. and M.F. designed the research; G.B. and T.R.S. prepared and characterized synthetic complexes and hybrid species; C.L., J.E. and G.B. contributed to maturation experiments and H2 evolution measurements; A.A. and C.L. performed FTIR measurements; G.B. and S.G. performed EPR measurements; J.-M.M. did DFT calculations; and M.F., G.B, E.R. and V.A. wrote the paper.

Corresponding author

Correspondence to M. Fontecave.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Tables1-6, Supplementary Figures 1-7 and Supplementary References. (PDF 1128 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berggren, G., Adamska, A., Lambertz, C. et al. Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499, 66–69 (2013). https://doi.org/10.1038/nature12239

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12239

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing