Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Masses of exotic calcium isotopes pin down nuclear forces

An Erratum to this article was published on 28 August 2013

This article has been updated

Abstract

The properties of exotic nuclei on the verge of existence play a fundamental part in our understanding of nuclear interactions1. Exceedingly neutron-rich nuclei become sensitive to new aspects of nuclear forces2. Calcium, with its doubly magic isotopes 40Ca and 48Ca, is an ideal test for nuclear shell evolution, from the valley of stability to the limits of existence. With a closed proton shell, the calcium isotopes mark the frontier for calculations with three-nucleon forces from chiral effective field theory3,4,5,6. Whereas predictions for the masses of 51Ca and 52Ca have been validated by direct measurements4, it is an open question as to how nuclear masses evolve for heavier calcium isotopes. Here we report the mass determination of the exotic calcium isotopes 53Ca and 54Ca, using the multi-reflection time-of-flight mass spectrometer7 of ISOLTRAP at CERN. The measured masses unambiguously establish a prominent shell closure at neutron number N = 32, in excellent agreement with our theoretical calculations. These results increase our understanding of neutron-rich matter and pin down the subtle components of nuclear forces that are at the forefront of theoretical developments constrained by quantum chromodynamics8.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Time-of-flight spectra.
Figure 3: Comparison of experimental results with theoretical predictions.

Change history

References

  1. 1

    Baumann, T., Spyrou, A. & Thoennessen, M. Nuclear structure experiments along the neutron drip line. Rep. Prog. Phys. 75, 036301 (2012)

    CAS  Article  ADS  Google Scholar 

  2. 2

    Hammer, H.-W., Nogga, A. & Schwenk, A. Three-body forces: from cold atoms to nuclei. Rev. Mod. Phys. 85, 197–217 (2013)

    CAS  Article  ADS  Google Scholar 

  3. 3

    Holt, J. D. et al. Three-body forces and shell structure in calcium isotopes. J. Phys. G 39, 085111 (2012)

    Article  ADS  Google Scholar 

  4. 4

    Gallant, A. T. et al. New precision mass measurements of neutron-rich calcium and potassium isotopes and three-nucleon forces. Phys. Rev. Lett. 109, 032506 (2012)

    CAS  Article  ADS  Google Scholar 

  5. 5

    Hagen, G. et al. Evolution of shell structure in neutron-rich calcium isotopes. Phys. Rev. Lett. 109, 032502 (2012)

    CAS  Article  ADS  Google Scholar 

  6. 6

    Roth, R. et al. Medium-mass nuclei with normal-ordered chiral NN+3N interactions. Phys. Rev. Lett. 109, 052501 (2012)

    Article  ADS  Google Scholar 

  7. 7

    Wollnik, H. & Przewloka, M. Time-of-flight mass spectrometers with multiply reflected ion trajectories. Int. J. Mass Spectrom. Ion Process. 96, 267–274 (1990)

    CAS  Article  ADS  Google Scholar 

  8. 8

    Epelbaum, E., Hammer, H.-W. & Meißner, U.-G. Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773–1825 (2009)

    CAS  Article  ADS  Google Scholar 

  9. 9

    Warner, D. Not-so-magic numbers. Nature 430, 517–519 (2004)

    CAS  Article  ADS  Google Scholar 

  10. 10

    Sorlin, O. & Porquet, M.-G. Nuclear magic numbers: new features far from stability. Prog. Part. Nucl. Phys. 61, 602–673 (2008)

    CAS  Article  ADS  Google Scholar 

  11. 11

    Janssens, R. V. F. Unexpected doubly magic nucleus. Nature 459, 1069–1070 (2009)

    CAS  Article  ADS  Google Scholar 

  12. 12

    Otsuka, T. et al. Magic numbers in exotic nuclei and spin-isospin properties of the NN interaction. Phys. Rev. Lett. 87, 082502 (2001)

    CAS  Article  ADS  Google Scholar 

  13. 13

    Otsuka, T. et al. Three-body forces and the limit of oxygen isotopes. Phys. Rev. Lett. 105, 032501 (2010)

    Article  ADS  Google Scholar 

  14. 14

    Hagen, G. et al. Continuum effects and three-nucleon forces in neutron-rich oxygen isotopes. Phys. Rev. Lett. 108, 242501 (2012)

    CAS  Article  ADS  Google Scholar 

  15. 15

    Erler, J. et al. The limits of the nuclear landscape. Nature 486, 509–512 (2012)

    CAS  Article  ADS  Google Scholar 

  16. 16

    Janssens, R. V. F. et al. Structure of 52,54Ti and shell closures in neutron-rich nuclei above 48Ca. Phys. Lett. B 546, 55–62 (2002)

    CAS  Article  ADS  Google Scholar 

  17. 17

    Mantica, P. F. et al. β decay of neutron-rich 53–56Ca. Phys. Rev. C 77, 014313 (2008)

    Article  ADS  Google Scholar 

  18. 18

    Crawford, H. L. et al. β decay and isomeric properties of neutron-rich Ca and Sc isotopes. Phys. Rev. C 82, 014311 (2010)

    Article  ADS  Google Scholar 

  19. 19

    Huck, A. et al. Beta decay of the new isotopes 52K, 52Ca, and 52Sc; a test of the shell model far from stability. Phys. Rev. C 31, 2226–2237 (1985)

    CAS  Article  ADS  Google Scholar 

  20. 20

    Gade, A. et al. Cross-shell excitation in two-proton knockout: structure of 52Ca. Phys. Rev. C 74, 021302(R) (2006)

    Article  ADS  Google Scholar 

  21. 21

    Poves, A. et al. Shell model study of the isobaric chains A = 50, A = 51 and A = 52. Nucl. Phys. A 694, 157–198 (2001)

    Article  ADS  Google Scholar 

  22. 22

    Honma, M. et al. New effective interaction for pf-shell nuclei and its implications for the stability of the N = Z = 28 closed core. Phys. Rev. C 69, 034335 (2004)

    Article  ADS  Google Scholar 

  23. 23

    Blaum, K. High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 1–78 (2006)

    CAS  Article  ADS  Google Scholar 

  24. 24

    Schweikhard, L., Bollen, G., eds. Special issue on ultra-accurate mass spectrometry and related topics. Int. J. Mass Spectrom. 251, 85–312 (2006)

    Article  Google Scholar 

  25. 25

    Mukherjee, M. et al. ISOLTRAP: an on-line Penning trap for mass spectrometry on short-lived nuclides. Eur. Phys. J. A 35, 1–29 (2008)

    CAS  Article  ADS  Google Scholar 

  26. 26

    Wolf, R. N. et al. On-line separation of short-lived nuclei by a multi-reflection time-of-flight device. Nucl. Instrum. Methods A 686, 82–90 (2012)

    CAS  Article  ADS  Google Scholar 

  27. 27

    Fedosseev, V. N. et al. Upgrade of the resonance ionization laser ion source at ISOLDE on-line isotope separation facility: new lasers and new ion beams. Rev. Sci. Instrum. 83, 02A903 (2012)

    CAS  Article  Google Scholar 

  28. 28

    Wang, M. et al. The AME2012 atomic mass evaluation. Chinese Phys. C 36, 1603–2014 (2012)

    Article  Google Scholar 

  29. 29

    Forssén, C. et al. Living on the edge of stability, the limits of the nuclear landscape. Phys. Scr. T 152, 014022 (2013)

    Article  ADS  Google Scholar 

  30. 30

    Audi, G. et al. The NUBASE2012 evaluation of nuclear properties. Chinese Phys. C 36, 1157–1286 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the BMBF (contracts 06GF9102, 05P12HGCI1, 05P12HGFNE, 06DA70471, 06DD9054), the DFG (grants SFB 634 and GE2183/2-1), the ERC (grant 307986 STRONGINT), the EU through ENSAR (grant 262010), the Helmholtz Alliance HA216/EMMI, the French IN2P3, the ISOLDE Collaboration and the Max-Planck Society. Computations were performed at the Jülich Supercomputing Center.

Author information

Affiliations

Authors

Contributions

D.B., Ch.B., R.B.C., S.K., D.L., V.M., D.N., M.R., J. Stanja, F.W. and R.N.W. performed the experiment. V.M. and F.W. performed the data analysis. J.D.H., J.M., A.S. and J. Simonis performed the NN+3N (MBPT) calculations. K.B., S.K., D.L., A.S., L.S. and F.W. prepared the manuscript. All authors discussed the results and contributed to the manuscript at all stages.

Corresponding author

Correspondence to F. Wienholtz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wienholtz, F., Beck, D., Blaum, K. et al. Masses of exotic calcium isotopes pin down nuclear forces. Nature 498, 346–349 (2013). https://doi.org/10.1038/nature12226

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links