Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Volcanism on Mars controlled by early oxidation of the upper mantle

Abstract

Detailed information about the chemical composition and evolution of Mars has been derived principally from the SNC (shergottite–nakhlite–chassignite) meteorites, which are genetically related igneous rocks of Martian origin1,2. They are chemically and texturally similar to terrestrial basalts and cumulates, except that they have higher concentrations of iron and volatile elements such as phosphorus and chlorine and lower concentrations of nickel and other chalcophile (sulphur-loving) elements3. Most Martian meteorites have relatively young crystallization ages (1.4 billion years to 180 million years ago4) and are considered to be derived from young, lightly cratered volcanic regions, such as the Tharsis plateau4,5. Surface rocks from the Gusev crater analysed by the Spirit rover are much older (about 3.7 billion years old6) and exhibit marked compositional differences from the meteorites7. Although also basaltic in composition, the surface rocks are richer in nickel and sulphur and have lower manganese/iron ratios than the meteorites. This has led to doubts that Mars can be described adequately using the ‘SNC model’. Here we show, however, that the differences between the compositions of meteorites and surface rocks can be explained by differences in the oxygen fugacity during melting of the same sulphur-rich mantle. This ties the sources of Martian meteorites to those of the surface rocks through an early (>3.7 billion years ago) oxidation of the uppermost mantle that had less influence on the deeper regions, which produce the more recent volcanic rocks.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: MgO versus Ni contents of Martian meteorites and Martian surface materials.
Figure 2: Values of and S contents of the Martian mantle used in our modelling.
Figure 3: Plot of FeOT versus MgO for initial partial melts of ref. 3 mantle24 and fractionated liquids.
Figure 4: Trends of MnO versus FeO for partial melts (30%) of the ref. 3 mantle and their derivative fractionally crystallizing liquids.

References

  1. McSween, H. Y. et al. Petrogenetic relationship between Allan Hills 77005 and other achondrites. Earth Planet. Sci. Lett. 45, 275–284 (1979)

    CAS  Article  ADS  Google Scholar 

  2. Walker, D., Stolper, E. M. & Hays, J. F. Basaltic volcanism: the importance of planet size. Proc Lunar Planet. Sci. Conf. 10, 1995–2015 (1979)

    ADS  Google Scholar 

  3. Dreibus, G. & Wanke, H. Mars, a volatile-rich planet. Meteoritics 20, 367–381 (1985)

    CAS  ADS  Google Scholar 

  4. Nyquist, L. E. et al. Ages and geologic histories of Martian meteorites. Space Sci. Rev. 96, 105–164 (2001)

    CAS  Article  ADS  Google Scholar 

  5. Treiman, A. H. The nakhlite meteorites: augite-rich igneous rocks from Mars. Chemie Erde Geochem. 65, 203–270 (2005)

    CAS  Article  ADS  Google Scholar 

  6. Greeley, R. et al. Fluid lava flows in Gusev crater, Mars. J. Geophys. Res. Planets 110, E05008 (2005)

    ADS  Google Scholar 

  7. McSween, H. Y., Taylor, G. J. & Wyatt, M. B. Elemental composition of the martian crust. Science 324, 736–739 (2009)

    CAS  Article  ADS  Google Scholar 

  8. McSween, H. Y. SNC meteorites — are they martian rocks? Geology 12, 3–6 (1984)

    CAS  Article  ADS  Google Scholar 

  9. Shih, C. Y. et al. Chronology and petrogenesis of young achondrites, Shergotty, Zagami, and Alha77005 — late magmatism on a geologically active planet. Geochim. Cosmochim. Acta 46, 2323–2344 (1982)

    CAS  Article  ADS  Google Scholar 

  10. Becker, R. H. & Pepin, R. O. The case for a martian origin of the shergottites: nitrogen and noble gases in EETA-79001. Earth Planet. Sci. Lett. 69, 225–242 (1984)

    CAS  Article  ADS  Google Scholar 

  11. Bogard, D. D. & Johnson, P. Martian gases in an Antarctic meteorite. Science 221, 651–654 (1983)

    CAS  Article  ADS  Google Scholar 

  12. McDonough, W. F. & Sun, S.-s. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    CAS  Article  ADS  Google Scholar 

  13. Bertka, C. M. & Fei, Y. W. Density profile of an SNC model Martian interior and the moment-of-inertia factor of Mars. Earth Planet. Sci. Lett. 157, 79–88 (1998)

    CAS  Article  ADS  Google Scholar 

  14. Konopliv, A. S. et al. Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428 (2011)

    Article  ADS  Google Scholar 

  15. Rivoldini, A., Van Hoolst, T., Verhoeven, O., Mocquet, A. & Dehant, V. Geodesy constraints on the interior structure and composition of Mars. Icarus 213, 451–472 (2011)

    CAS  Article  ADS  Google Scholar 

  16. Rieder, R. et al. Chemistry of rocks and soils at Meridiani Planum from the alpha particle X-ray spectrometer. Science 306, 1746–1749 (2004)

    CAS  Article  ADS  Google Scholar 

  17. McSween, H. Y. et al. Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars. J. Geophys. Res. 111, E02S10 (2006)

    Article  Google Scholar 

  18. Wood, B. J., Walter, M. J. & Wade, J. Accretion of the Earth and segregation of its core. Nature 441, 825–833 (2006)

    CAS  Article  ADS  Google Scholar 

  19. Wadhwa, M. Redox state of Mars’ upper mantle and crust from Eu anomalies in shergottite pyroxenes. Science 291, 1527–1530 (2001)

    CAS  Article  ADS  Google Scholar 

  20. Herd, C. D. K., Borg, L. E., Jones, J. H. & Papike, J. J. Oxygen fugacity and geochemical variations in the martian basalts: implications for martian basalt petrogenesis and the oxidation state of the upper mantle of Mars. Geochim. Cosmochim. Acta 66, 2025–2036 (2002)

    CAS  Article  ADS  Google Scholar 

  21. O'Neill, H. S. & Mavrogenes, J. A. The sulfide capacity and the sulfur content at sulfide saturation of silicate melts at 1400°C and 1 bar. J. Petrol. 43, 1049–1087 (2002)

    CAS  Article  ADS  Google Scholar 

  22. Mathez, E. A. Sulfur solubility and magmatic sulfides in submarine basalt glass. J. Geophys. Res. 81, 4269–4276 (1976)

    CAS  Article  ADS  Google Scholar 

  23. Jugo, P. J. Sulfur content at sulfide saturation in oxidized magmas. Geology 37, 415–418 (2009)

    CAS  Article  ADS  Google Scholar 

  24. Bertka, C. M. & Holloway, J. R. Anhydrous partial melting of an iron-rich mantle. 2. Primary melt compositions at 15 kbar. Contrib. Mineral. Petrol. 115, 323–338 (1994)

    CAS  Article  ADS  Google Scholar 

  25. Danyushevsky, L. V. & Plechov, P. Petrolog3: integrated software for modeling crystallization processes. Geochem. Geophys. Geosyst. 12, Q07021 (2011)

    Article  ADS  Google Scholar 

  26. Agee, C. B. et al. Unique meteorite from Early Amazonian Mars: water-rich basaltic breccia Northwest Africa 7034. Science 339, 780–785 (2013)

    CAS  Article  ADS  Google Scholar 

  27. Bertka, C. M. & Holloway, J. R. Anhydrous partial melting of an iron-rich mantle. 1. Subsolidus phase assemblages and partial melting phase-relations at 10 to 30 kbar. Contrib. Mineral. Petrol. 115, 313–322 (1994)

    CAS  Article  ADS  Google Scholar 

  28. Gellert, R. et al. Alpha particle X-ray spectrometer (APXS): results from Gusev crater and calibration report. J. Geophys. Res. 111, E02S05 (2006)

    Article  Google Scholar 

  29. Ming, D. W. et al. Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. J. Geophys. Res. 111, E02S12 (2006)

    Article  Google Scholar 

  30. Carmichael, I. S. E. The redox states of basic and silicic magmas — a reflection of their source regions. Contrib. Mineral. Petrol. 106, 129–141 (1991)

    CAS  Article  ADS  Google Scholar 

  31. Luhr, J. F., Carmichael, I. S. E. & Varekamp, J. C. The 1982 eruptions of El Chichon Volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite-bearing pumices. J. Volcanol. Geotherm. Res. 23, 69–108 (1984)

    CAS  Article  ADS  Google Scholar 

  32. McSween, H. Y., Grove, T. L. & Wyatt, M. B. Constraints on the composition and petrogenesis of the Martian crust. J. Geophys. Res. 108, 5135 (2003)

    Article  Google Scholar 

  33. Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29–60 (1998)

    CAS  Article  ADS  Google Scholar 

  34. Agee, C. B. & Draper, D. S. Experimental constraints on the origin of Martian meteorites and the composition of the Martian mantle. Earth Planet. Sci. Lett. 224, 415–429 (2004)

    CAS  Article  ADS  Google Scholar 

  35. Brenan, J. M. Effects of fO2, fS2, temperature and melt composition on Fe-Ni exchange between olivine and sulfide liquid: implications for natural olivine-sulfide assemblages. Geochim. Cosmochim. Acta 67, 2663–2681 (2003)

    CAS  Article  ADS  Google Scholar 

  36. Li, Y. & Audetat, A. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth Planet. Sci. Lett. 355–356, 327–340 (2012)

    Article  ADS  Google Scholar 

  37. Jugo, P. J., Wilke, M. & Botcharnikov, R. E. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: implications for S speciation and S content as function of oxygen fugacity. Geochim. Cosmochim. Acta 74, 5926–5938 (2010)

    CAS  Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the UK Science and Technology Facilities Council (grant ST/G00272X/1) and from the European Research Council (grant 267764).

Author information

Authors and Affiliations

Authors

Contributions

The idea of this paper was developed by all three authors during an informal discussion. J.T. did most of the modelling with input from J.W. and B.J.W. B.J.W. wrote most of the paper with input from J.T. and J.W.

Corresponding author

Correspondence to B. J. Wood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-2, Supplementary Table 1 and Supplementary References. (PDF 568 kb)

Supplementary Data

This file contains an annotated Excel Spreadsheet. (XLSX 373 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tuff, J., Wade, J. & Wood, B. Volcanism on Mars controlled by early oxidation of the upper mantle. Nature 498, 342–345 (2013). https://doi.org/10.1038/nature12225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12225

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing