Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers

Abstract

An important challenge in geomorphology is the reconciliation of the high fluvial incision rates observed in tectonically active mountain ranges with the long-term preservation of significant mountain-range relief in ancient, tectonically inactive orogenic belts1,2,3. River bedrock erosion and sediment transport are widely recognized to be the principal controls on the lifespan of mountain ranges. But the factors controlling the rate of erosion4,5,6,7,8 and the reasons why they seem to vary significantly as a function of tectonic activity remain controversial. Here we use computational simulations to show that the key to understanding variations in the rate of erosion between tectonically active and inactive mountain ranges may relate to a bidirectional coupling between bedrock river incision and landslides. Whereas fluvial incision steepens surrounding hillslopes and increases landslide frequency9, landsliding affects fluvial erosion rates in two fundamentally distinct ways. On the one hand, large landslides overwhelm the river transport capacity and cause upstream build up of sediment that protects the river bed from further erosion9,10,11. On the other hand, in delivering abrasive agents to the streams4,5,6, landslides help accelerate fluvial erosion. Our models illustrate how this coupling has fundamentally different implications for rates of fluvial incision in active and inactive mountain ranges. The coupling therefore provides a plausible physical explanation for the preservation of significant mountain-range relief in old orogenic belts, up to several hundred million years after tectonic activity has effectively ceased.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Landscape morphology.
Figure 2: Feedbacks between landsliding, fluvial incision and sediment transport.
Figure 3: Erosion rates and post-orogenic lifespan.

References

  1. 1

    Von Blanckenburg, F. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet. Sci. Lett. 237, 462–479 (2005)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Molnar, P., Andersen, R. S. & Anderson, S. P. Tectonics, fracturing of rock, and erosion. J. Geophys. Res. 112, F03014 (2007)

    ADS  Article  Google Scholar 

  3. 3

    Baldwin, J. A., Whipple, K. X. & Tucker, G. E. Implications of the shear stress river incision model for the timescale of postorogenic decay of topography. J. Geophys. Res. 108, 2158 (2003)

    ADS  Article  Google Scholar 

  4. 4

    Whipple, K. X., Hancock, G. S. & Anderson, R. S. River incision into bedrock: mechanics and relative efficacy of plucking, abrasion, and cavitation. Geol. Soc. Am. Bull. 112, 490–503 (2000)

    ADS  Article  Google Scholar 

  5. 5

    Sklar, L. S. & Dietrich, W. E. Sediment and rock strength controls on river incision into bedrock. Geology 29, 1087–1090 (2001)

    ADS  Article  Google Scholar 

  6. 6

    Hancock, G. S. & Anderson, R. S. Numerical modelling of fluvial strath-terrace formation in response to oscillating climate. Geol. Soc. Am. Bull. 114, 1131–1142 (2002)

    Google Scholar 

  7. 7

    Turowski, J. M., Lague, D. & Hovius, N. Cover effects in bedrock abrasion: a new derivation and its implications for the modelling of bedrock channel morphology. J. Geophys. Res. 112, F04006 (2007)

    ADS  Article  Google Scholar 

  8. 8

    Yanites, B. J. et al. The influence of sediment cover variability on long-term river incision rates: an example from Peikang River, central Taiwan. J. Geophys. Res. 116, F03016 (2011)

    ADS  Article  Google Scholar 

  9. 9

    Larsen, I. J. & Montgomery, D. R. Landslide erosion coupled to tectonics and river incision. Nat. Geosci. 5, 468–473 (2012)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Ouimet, W. B. et al. The influence of large landslides on river incision in a transient landscape: eastern margin of the Tibetan Plateau (Sichuan, China). Geol. Soc. Am. Bull. 119, 1462–1476 (2007)

    ADS  Article  Google Scholar 

  11. 11

    Korup, O., Densmore, A. L. & Schlunegger, F. The role of landslides in mountain range evolution. Geomorphology 120, 77–90 (2010)

    ADS  Article  Google Scholar 

  12. 12

    Seidl, M. A. & Dietrich, W. E. The problem of channel erosion into bedrock. Catena (Suppl.)23, 101–124 (1992)

    Google Scholar 

  13. 13

    Howard, A. D. & Kerby, G. Channel changes in badlands. Geol. Soc. Am. Bull. 94, 739–752 (1983)

    ADS  Article  Google Scholar 

  14. 14

    Whipple, K. X. et al. Geomorphic limits to climate-induced increases in topographic relief. Nature 401, 39–43 (1999)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Kirby, E. & Whipple, K. X. Quantifying differential rock-uplift rates via stream profile analysis. Geology 29, 415–418 (2001)

    ADS  Article  Google Scholar 

  16. 16

    Dadson, S. J. et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426, 648–651 (2003)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Stock, J. D. et al. Field measurements of incision rates following bedrock exposure: implications for process controls on the long profiles of valleys cut by rivers and debris flow. Geol. Soc. Am. Bull. 117, 174–194 (2005)

    ADS  Article  Google Scholar 

  18. 18

    Riebe, C. S. et al. Minimal climatic control on erosion rates in the Sierra Nevada. Calif. Geol. 29, 447–450 (2001)

    CAS  Article  Google Scholar 

  19. 19

    Burbank, D. W. et al. Decoupling of erosion and precipitation in the Himalayas. Nature 426, 652–655 (2003)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Burbank, D. W. et al. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379, 505–510 (1996)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Montgomery, D. R. & Brandon, M. T. Topographic controls on erosion rates in tectonically active mountain ranges. Earth Planet. Sci. Lett. 201, 481–489 (2002)

    ADS  CAS  Article  Google Scholar 

  22. 22

    von Blanckenburg, F., Hewawasam, T. & Kubik, P. W. Cosmogenic nuclide evidence for low weathering and denudation in the wet, tropical highlands of Sri Lanka. J. Geophys. Res. 109, F03008 (2004)

    ADS  Article  Google Scholar 

  23. 23

    Scharf, T. E. et al. Strong rocks sustain ancient postorogenic topography in southern Africa. Geology 41, 331–334 (2013)

    ADS  Article  Google Scholar 

  24. 24

    Sklar, L. S. & Dietrich, W. E. A mechanistic model for river incision into bedrock by saltating bed load. Wat. Resour. Res. 40, W06301 (2004)

    ADS  Article  Google Scholar 

  25. 25

    Cowie, P. A. et al. New constraints on sediment-flux-dependent river incision: implications for extracting tectonic signals from river profiles. Geology 36, 535–538 (2008)

    ADS  Article  Google Scholar 

  26. 26

    Whipple, K. X. & Tucker, G. E. Implications of sediment-flux-dependent river incision models for landscape evolution. J. Geophys. Res. 107, 2039 (2002)

    ADS  Article  Google Scholar 

  27. 27

    Gasparini, N. M., Whipple, K. X. & Bras, R. L. Predictions of steady state and transient landscape morphology using sediment-flux-dependent river incision models. J. Geophys. Res. 112, F03S09 (2007)

    ADS  Article  Google Scholar 

  28. 28

    Hovius, N., Stark, C. P., Hao-Tsu, C. & Jiun-Chuan, L. Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. J. Geol. 108, 73–89 (2000)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Sklar, L. S. & Dietrich, W. E. Implications of the saltation-abrasion bedrock incision model for steady-state river longitudinal profile relief and concavity. Earth Surf. Process. Landf. 33, 1129–1151 (2008)

    ADS  Article  Google Scholar 

  30. 30

    Jansen, J. D. et al. Does decreasing paraglacial sediment supply slow knickpoint retreat? Geology 39, 543–546 (2011)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Braun, J. & Sambridge, M. Modelling landscape evolution on geological time scales: a new method based on irregular spatial discretization. Basin Res. 9, 27–52 (1997)

    ADS  Article  Google Scholar 

  32. 32

    Tucker, G. E. & Slingerland, R. L. Predicting sediment flux from fold and thrust belts. Basin Res. 8, 329–349 (1996)

    ADS  Article  Google Scholar 

  33. 33

    Parker, G. & Andrews, E. D. Sorting of bedload sediment by flow in meander bends. Wat. Resour. Res. 21, 1361–1373 (1985)

    ADS  Article  Google Scholar 

  34. 34

    Wilcock, P. R. Two-fraction model of initial sediment motion in gravel-bed rivers. Science 280, 410–412 (1998)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Andrews, D. J. & Bucknam, R. C. Fitting degradation of shoreline scarps by a nonlinear diffusion model. J. Geophys. Res. 92, 12857–12867 (1987)

    ADS  Article  Google Scholar 

  36. 36

    Roering, J. J., Kirchner, J. W. & Dietrich, W. E. Evidence for nonlinear, diffusive sediment transport and implications for landscape morphology. Wat. Resour. Res. 35, 853–870 (1999)

    ADS  Article  Google Scholar 

  37. 37

    Howard, A. D. A detachment-limited model of drainage basin evolution. Wat. Resour. Res. 30, 2261–2285 (1994)

    ADS  Article  Google Scholar 

  38. 38

    Densmore, A. L., Ellis, M. A. & Anderson, R. S. Landsliding and the evolution of normal-fault-bounded mountains. J. Geophys. Res. 103, 15203–15219 (1998)

    ADS  Article  Google Scholar 

  39. 39

    Turcotte, D. Fractals and Chaos in Geology and Geophysics 20–34 (Cambridge Univ. Press, 1992)

    MATH  Google Scholar 

  40. 40

    Crosta, G., Frattini, P. & Fusi, N. Fragmentation in the Val Pola rock avalanche, Italian Alps. J. Geophys. Res. 112, F01006 (2007)

    ADS  Article  Google Scholar 

  41. 41

    Small, E. E., Anderson, R. S. & Hancock, G. S. Estimates of the rate of regolith production using 10Be and 26Al from an alpine hillslope. Geomorphology 27, 131–150 (1999)

    ADS  Article  Google Scholar 

  42. 42

    Ahnert, F. Brief description of a comprehensive three-dimensional process-response model of landform development. Z. Geomorphol. 24, 11–22 (1970)

    Google Scholar 

  43. 43

    Heimsath, A. M., Dietrich, W. E., Nishiizumi, K. & Finkel, R. C. The soil production function and landscape equilibrium. Nature 388, 358–361 (1997)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

D.L.E. acknowledges funding from the Danish Council for Independent Research under the Sapere Aude programme. M.F.K. acknowledges funding from the Carlsberg Foundation and the Villum Foundation. M.S. acknowledges funding from ARC DP110104098 and AISRF.

Author information

Affiliations

Authors

Contributions

D.L.E. developed the computational modelling scheme and performed the modelling. All authors contributed equally to the design of the study and the writing of the paper.

Corresponding author

Correspondence to David L. Egholm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-6, Supplementary Tables 1-2, Supplementary Methods, a Supplementary Discussion and additional references. (PDF 1300 kb)

The dynamic model landscape

The video shows the landscape of a model simulation with river incision by saltation-abrasion, bedrock landslides, and sediment transport in rivers and on hillslopes. The topography is highly dynamic, showing rapid oscillations owing to feedbacks between landsliding and river incision. The yellow colors represent alluvial sediment that is caught in the fluvial drainage system because of dams generated by landslide deposits. (MOV 9907 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Egholm, D., Knudsen, M. & Sandiford, M. Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers. Nature 498, 475–478 (2013). https://doi.org/10.1038/nature12218

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing