Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Wnt activation in nail epithelium couples nail growth to digit regeneration


The tips of mammalian digits can regenerate after amputation1,2, like those of amphibians. It is unknown why this capacity is limited to the area associated with the nail2,3,4. Here we show that nail stem cells (NSCs) reside in the proximal nail matrix and that the mechanisms governing NSC differentiation are coupled directly with their ability to orchestrate digit regeneration. Early nail progenitors undergo Wnt-dependent differentiation into the nail. After amputation, this Wnt activation is required for nail regeneration and also for attracting nerves that promote mesenchymal blastema growth, leading to the regeneration of the digit. Amputations proximal to the Wnt-active nail progenitors result in failure to regenerate the nail or digit. Nevertheless, β-catenin stabilization in the NSC region induced their regeneration. These results establish a link between NSC differentiation and digit regeneration, and suggest that NSCs may have the potential to contribute to the development of novel treatments for amputees.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Nail stem cells are harboured in the proximal nail matrix.
Figure 2: Epithelial β-catenin is required for nail differentiation.
Figure 3: Nail epithelial β-catenin is required for blastema growth and digit regeneration.
Figure 4: Forced Wnt activation in wound epidermis can overcome the limitation of regeneration after proximal amputation.

Accession codes


Gene Expression Omnibus

Data deposits

Expression information has been submitted to the Gene Expression Omnibus database under accession numbers GSE45494, GSM1105640, GSM1105641, GSM1105642 and GSM1105643.


  1. 1

    Douglas, B. S. Conservative management of guillotine amputation of the finger in children. Aust. Paediatr. J. 8, 86–89 (1972)

    CAS  PubMed  Google Scholar 

  2. 2

    Borgens, R. B. Mice regrow the tips of their foretoes. Science 217, 747–750 (1982)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Zhao, W. & Neufeld, D. A. Bone regrowth in young mice stimulated by nail organ. J. Exp. Zool. 271, 155–159 (1995)

    CAS  Article  Google Scholar 

  4. 4

    Mohammad, K. S., Day, F. A. & Neufeld, D. A. Bone growth is induced by nail transplantation in amputated proximal phalanges. Calcif. Tissue Int. 65, 408–410 (1999)

    CAS  Article  Google Scholar 

  5. 5

    Rinkevich, Y., Lindau, P., Ueno, H., Longaker, M. T. & Weissman, I. L. Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature 476, 409–413 (2011)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Lehoczky, J. A., Robert, B. & Tabin, C. J. Mouse digit tip regeneration is mediated by fate-restricted progenitor cells. Proc. Natl Acad. Sci. USA 108, 20609–20614 (2011)

    CAS  ADS  Article  Google Scholar 

  7. 7

    Neufeld, D. A. Partial blastema formation after amputation in adult mice. J. Exp. Zool. 212, 31–36 (1980)

    CAS  Article  Google Scholar 

  8. 8

    Han, M., Yang, X., Lee, J., Allan, C. H. & Muneoka, K. Development and regeneration of the neonatal digit tip in mice. Dev. Biol. 315, 125–135 (2008)

    CAS  Article  Google Scholar 

  9. 9

    Neufeld, D. A. & Zhao, W. Phalangeal regrowth in rodents: postamputational bone regrowth depends upon the level of amputation. Prog. Clin. Biol. Res. 383A, 243–252 (1993)

    CAS  PubMed  Google Scholar 

  10. 10

    Norton, L. A. Incorporation of thymidine-methyl-H3 and glycine-2–H3 in the nail matrix and bed of humans. J. Invest. Dermatol. 56, 61–68 (1971)

    CAS  Article  Google Scholar 

  11. 11

    Fleckman, P., Jaeger, K., Silva, K. A. & Sundberg, J. P. Comparative anatomy of mouse and human nail units. Anat. Rec. (Hoboken) 296, 521–532 (2013)

    Article  Google Scholar 

  12. 12

    Al-Qattan, M. M. WNT pathways and upper limb anomalies. J. Hand Surg. Eur. Vol. 36, 9–22 (2011)

    CAS  Article  Google Scholar 

  13. 13

    Blaydon, D. C. et al. The gene encoding R-spondin 4 (RSPO4), a secreted protein implicated in Wnt signaling, is mutated in inherited anonychia. Nature Genet. 38, 1245–1247 (2006)

    CAS  Article  Google Scholar 

  14. 14

    Adaimy, L. et al. Mutation in WNT10A is associated with an autosomal recessive ectodermal dysplasia: the odonto-onycho-dermal dysplasia. Am. J. Hum. Genet. 81, 821–828 (2007)

    Article  Google Scholar 

  15. 15

    Rabbani, P. et al. Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell 145, 941–955 (2011)

    CAS  Article  Google Scholar 

  16. 16

    Lin, M. H. & Kopan, R. Long-range, nonautonomous effects of activated Notch1 on tissue homeostasis in the nail. Dev. Biol. 263, 343–359 (2003)

    CAS  Article  Google Scholar 

  17. 17

    Nakamura, M. & Ishikawa, O. The localization of label-retaining cells in mouse nails. J. Invest. Dermatol. 128, 728–730 (2008)

    CAS  Article  Google Scholar 

  18. 18

    Al Alam, D. et al. Contrasting expression of canonical Wnt signaling reporters TOPGAL, BATGAL and Axin2LacZ during murine lung development and repair. PLoS ONE 6, e23139 (2011)

    CAS  ADS  Article  Google Scholar 

  19. 19

    van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997)

    CAS  Article  Google Scholar 

  20. 20

    Bänziger, C. et al. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125, 509–522 (2006)

    Article  Google Scholar 

  21. 21

    Zhou, P., Byrne, C., Jacobs, J. & Fuchs, E. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev. 9, 700–713 (1995)

    CAS  Article  Google Scholar 

  22. 22

    Lynch, M. H., O'Guin, W. M., Hardy, C., Mak, L. & Sun, T. T. Acidic and basic hair/nail (“hard”) keratins: their colocalization in upper cortical and cuticle cells of the human hair follicle and their relationship to “soft” keratins. J. Cell Biol. 103, 2593–2606 (1986)

    CAS  Article  Google Scholar 

  23. 23

    Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L. & Karsenty, G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747–754 (1997)

    CAS  Article  Google Scholar 

  24. 24

    Mohammad, K. S. & Neufeld, D. A. Denervation retards but does not prevent toetip regeneration. Wound Repair Regen. 8, 277–281 (2000)

    CAS  Article  Google Scholar 

  25. 25

    Brockes, J. P. The nerve dependence of amphibian limb regeneration. J. Exp. Biol. 132, 79–91 (1987)

    CAS  PubMed  Google Scholar 

  26. 26

    Kantor, D. B. et al. Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44, 961–975 (2004)

    CAS  Article  Google Scholar 

  27. 27

    Zhang, Y. et al. Activation of β-catenin signaling programs embryonic epidermis to hair follicle fate. Development 135, 2161–2172 (2008)

    CAS  Article  Google Scholar 

  28. 28

    Mullen, L. M., Bryant, S. V., Torok, M. A., Blumberg, B. & Gardiner, D. M. Nerve dependency of regeneration: the role of Distal-less and FGF signaling in amphibian limb regeneration. Development 122, 3487–3497 (1996)

    CAS  PubMed  Google Scholar 

  29. 29

    Kawakami, Y. et al. Wnt/β-catenin signaling regulates vertebrate limb regeneration. Genes Dev. 20, 3232–3237 (2006)

    CAS  Article  Google Scholar 

  30. 30

    Yokoyama, H., Ogino, H., Stoick-Cooper, C. L., Grainger, R. M. & Moon, R. T. Wnt/β-catenin signaling has an essential role in the initiation of limb regeneration. Dev. Biol. 306, 170–178 (2007)

    CAS  Article  Google Scholar 

  31. 31

    Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation of the β-catenin gene. EMBO J. 18, 5931–5942 (1999)

    CAS  Article  Google Scholar 

  32. 32

    Vasioukhin, V., Degenstein, L., Wise, B. & Fuchs, E. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl Acad. Sci. USA 96, 8551–8556 (1999)

    CAS  ADS  Article  Google Scholar 

  33. 33

    Lowry, W. E. et al. Defining the impact of β-catenin/Tcf transactivation on epithelial stem cells. Genes Dev. 19, 1596–1611 (2005)

    CAS  Article  Google Scholar 

  34. 34

    Myung, P. S., Takeo, M., Ito, M. & Atit, R. P. Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration. J. Invest. Dermatol. (2013)

  35. 35

    DasGupta, R. & Fuchs, E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126, 4557–4568 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Lustig, B. et al. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol. Cell. Biol. 22, 1184–1193 (2002)

    CAS  Article  Google Scholar 

  37. 37

    Barrandon, Y. & Green, H. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl Acad. Sci. USA 84, 2302–2306 (1987)

    CAS  ADS  Article  Google Scholar 

  38. 38

    Yu, L. et al. BMP signalling induces digit regeneration in neonatal mice. Development 137, 551–559 (2010)

    CAS  Article  Google Scholar 

Download references


We thank T. Andl, T. Endo, L. Miller, P. Myung, M. Schober and T. T. Sun for invaluable suggestions and discussion. We thank T. Endo for demonstrating the method of bead implantation. We thank T. T. Sun for the AE13 antibody, K. Muneoka for the Bmp4 plasmid, and A. Mansukhani for 3T3 cells. We thank the Genome Technology Center at NYU (National Institutes of Health (NIH) grant 5P30CA0016087-32 and P30 CA016087-30), and the Center for Functional Genomics at University at Albany for carrying out microarray analyses. We thank F. Liang at the NYU Microscopy Core for transmission electron microscopy (TEM) analysis. We thank the NYU Microscopy Core for the use of a confocal microscope (NCRRS10 RR023704-01A1). M.T. is supported by the NYU Kimmel Stem Cell Center and NYSTEM training grant C026880. M.I. is supported by NIH National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) grant 1R01AR059768-01A1, the Ellison Medical Foundation and funding from the Department of Dermatology and Cell Biology, and the Helen and Martin Kimmel Center for Stem Cell Biology, at NYU.

Author information




M.T. designed and carried out experiments, interpreted data and wrote the manuscript. W.C.C., P.R. and Q.S. performed experiments and interpreted data. M.M.T. generated β-cateninfl/ex3 mice and interpreted the data. C.L. and W.L. interpreted data. M.I. designed experiments, interpreted data and wrote the manuscript.

Corresponding author

Correspondence to Mayumi Ito.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-18 and Supplementary Table 1. (PDF 5256 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Takeo, M., Chou, W., Sun, Q. et al. Wnt activation in nail epithelium couples nail growth to digit regeneration. Nature 499, 228–232 (2013).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing