Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multi-periodic pulsations of a stripped red-giant star in an eclipsing binary system



Low-mass white-dwarf stars are the remnants of disrupted red-giant stars in binary millisecond pulsars1 and other exotic binary star systems2,3,4. Some low-mass white dwarfs cool rapidly, whereas others stay bright for millions of years because of stable fusion in thick surface hydrogen layers5. This dichotomy is not well understood, so the potential use of low-mass white dwarfs as independent clocks with which to test the spin-down ages of pulsars6,7 or as probes of the extreme environments in which low-mass white dwarfs form8,9,10 cannot fully be exploited. Here we report precise mass and radius measurements for the precursor to a low-mass white dwarf. We find that only models in which this disrupted red-giant star has a thick hydrogen envelope can match the strong constraints provided by our data. Very cool low-mass white dwarfs must therefore have lost their thick hydrogen envelopes by irradiation from pulsar companions11,12 or by episodes of unstable hydrogen fusion (shell flashes). We also find that this low-mass white-dwarf precursor is a type of pulsating star not hitherto seen. The observed pulsation frequencies are sensitive to internal processes that determine whether this star will undergo shell flashes.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Observations of J0247-25.
Figure 2: Positions of J0247-25A and J0247-25B in the Hertzsprung–Russell diagram.
Figure 3: Adiabatic pulsation frequencies for models of J0247-25B.


  1. 1

    Lorimer, D. R. Binary and millisecond pulsars. Liv. Rev. Rel. 11, 8 (2008)

    Article  Google Scholar 

  2. 2

    Kilic, M. et al. The ELM Survey. II. Twelve binary white dwarf merger systems. Astrophys. J. 727, 3 (2011)

    ADS  Article  Google Scholar 

  3. 3

    Breton, R. P., Rappaport, S. A., van Kerkwijk, M. H. & Carter, J. A. KOI 1224: a fourth bloated hot white dwarf companion found with Kepler. Astrophys. J. 748, 115 (2012)

    ADS  Article  Google Scholar 

  4. 4

    Hermes, J. J., Kilic, M., Brown, W. R., Montgomery, M. H. & Winget, D. E. Two new tidally distorted white dwarfs. Astrophys. J. 749, 42 (2012)

    ADS  Article  Google Scholar 

  5. 5

    Webbink, R. F. Evolution of helium white dwarfs in close binaries. Mon. Not. R. Astron. Soc. 171, 555–568 (1975)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Kiziltan, B. & Thorsett, S. E. Millisecond pulsar ages: implications of binary evolution and a maximum spin limit. Astrophys. J. 715, 335–341 (2010)

    ADS  Article  Google Scholar 

  7. 7

    van Kerkwijk, M. H., Bassa, C. G., Jacoby, B. A. & Jonker, P. G. Optical studies of companions to millisecond pulsars. Astron. Soc. Pacif. Conf. Ser. 328, 357–370 (2005)

    ADS  Google Scholar 

  8. 8

    Gezari, S. et al. An ultraviolet-optical flare from the tidal disruption of a helium-rich stellar core. Nature 485, 217–220 (2012)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Knigge, C. et al. Stellar exotica in 47 Tucanae. Astrophys. J. 683, 1006–1030 (2008)

    CAS  ADS  Article  Google Scholar 

  10. 10

    Strickler, R. R. et al. Helium-core white dwarfs in the globular cluster NGC 6397. Astrophys. J. 699, 40–55 (2009)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Ergma, E., Sarna, M. J. & Gerškevitš-Antipova, J. The helium white dwarf in two pulsars: too cool in PSR J0751+1807 and too hot in PSR J1012+5307? Mon. Not. R. Astron. Soc. 321, 71–76 (2001)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Breton, R. P. et al. Discovery of the optical counterparts to four energetic Fermi millisecond pulsars. Astrophys. J. 769, 108 (2013)

    ADS  Article  Google Scholar 

  13. 13

    Althaus, L. G., Serenelli, A. M. & Benvenuto, O. G. Diffusion and the occurrence of hydrogen-shell flashes in helium white dwarf stars. Mon. Not. R. Astron. Soc. 323, 471–483 (2001)

    CAS  ADS  Article  Google Scholar 

  14. 14

    Driebe, T., Schönberner, D., Blöcker, T. & Herwig, F. The evolution of helium white dwarfs. I. The companion of the millisecond pulsar PSR J1012+5307. Astron. Astrophys. 339, 123–133 (1998)

    CAS  ADS  Google Scholar 

  15. 15

    Iben, I., Jr & Tutukov, A. V. On the formation and evolution of a helium degenerate dwarf in a close binary. Astrophys. J. 311, 742–752 (1986)

    CAS  ADS  Article  Google Scholar 

  16. 16

    Bassa, C. G., van Kerkwijk, M. H. & Kulkarni, S. R. The ultra-cool white dwarf companion of PSR J0751+1807. Astron. Astrophys. 450, 295–303 (2006)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Espinoza, C. M., Lyne, A. G., Kramer, M., Manchester, R. N. & Kaspi, V. M. The braking index of PSR J1734–3333 and the magnetar population. Astrophys. J. 741, L13 (2011)

    ADS  Article  Google Scholar 

  18. 18

    Noutsos, A., Schnitzeler, D., Keane, E., Kramer, M. & Johnston, S. Pulsar spin-velocity alignment: kinematic ages, birth periods and braking indices. Mon. Not. R. Astron. Soc. 430, 2281–2301 (2013)

    ADS  Article  Google Scholar 

  19. 19

    Maxted, P. F. L. et al. Discovery of a stripped red giant core in a bright eclipsing binary system. Mon. Not. R. Astron. Soc. 418, 1156–1164 (2011)

    ADS  Article  Google Scholar 

  20. 20

    Nelson, L. A., Dubeau, E. & MacCannell, K. A. Evolutionary properties of helium-rich, degenerate dwarfs in binaries containing compact companions. Astrophys. J. 616, 1124–1147 (2004)

    CAS  ADS  Article  Google Scholar 

  21. 21

    Bíró, I. B. & Nuspl, J. Photometric mode identification methods of non-radial pulsations in eclipsing binaries—I. Dynamic eclipse mapping. Mon. Not. R. Astron. Soc. 416, 1601–1615 (2011)

    ADS  Article  Google Scholar 

  22. 22

    Aerts, C., Christensen-Dalsgaard, J. & Kurtz, D. W. Asteroseismology Ch. 6 (Springer, 2010)

    Book  Google Scholar 

  23. 23

    Beck, P. G. et al. Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes. Nature 481, 55–57 (2012)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Dupret, M.-A. et al. Asteroseismology of the β Cep star HD 129929. II. Seismic constraints on core overshooting, internal rotation and stellar parameters. Astron. Astrophys. 415, 251–257 (2004)

    ADS  Article  Google Scholar 

  25. 25

    Maxted, P. F. L. et al. Discovery of a stripped red-giant core in a bright eclipsing binary star. In Fifth Meeting on Hot Subdwarf Stars and Related Objects ASP Conf. Ser. Vol. 452, 137–146 (Astronomical Society of the Pacific, 2012)

  26. 26

    Dhillon, V. et al. ULTRACAM: an ultrafast, triple-beam CCD camera for high-speed astrophysics. Mon. Not. R. Astron. Soc. 378, 825–840 (2007)

    CAS  ADS  Article  Google Scholar 

  27. 27

    Dotter, A. et al. The Dartmouth Stellar Evolution Database. Astrophys. J. 178 (Supp.). 89–101 (2008)

    CAS  Article  Google Scholar 

  28. 28

    Dupret, M.-A., Grigahcène, A., Garrido, R., Gabriel, M. & Scuflaire, R. Theoretical instability strips for δ Scuti and γ Doradus stars. Astron. Astrophys. 414, L17–L20 (2004)

    ADS  Article  Google Scholar 

Download references


We thank the ESO staff who obtained our UVES data for carefully scheduling the observations at the correct orbital phases. We thank A. Cherman and D. Kurtz for comments on a draft version of the paper. This work is based on observations collected at the ESO, Chile (program ID: 086.D-0194). A.M.S. is partially supported by a Re-integration Grant (PIRG-GA-2009-247732; FP7-People), and a MICINN grant (AYA2011-24704). V.S. acknowledges funding by the Deutsches Zentrum für Luft- und Raumfahrt (grant 50 OR 1110) and by the Erika-Giehrl-Stiftung. T.R.M. acknowledges funding from the UK Science and Technology Facilities Council (ST/I001719/1).

Author information




P.F.L.M. analysed the light curves and spectroscopy and wrote the paper. A.M.S. calculated the models of the formation and evolution of J0247-25B. A.M. conducted the investigation into the pulsation properties of J0247-25B. T.R.M. and P.F.L.M. produced the light curves from the Ultracam images. U.H. calculated the synthetic stellar spectra used to check our effective temperature estimates for J0247-25B. T.R.M., V.S.D., S.L. and C.C. are responsible for the operation and maintenance of Ultracam and contributed to the planning and execution of the observations. B.S. calculated the synthetic stellar spectra and performed the comparison with the observed spectra for J0247-25A. V.S. and E.B. contributed to the execution of the observations.

Corresponding author

Correspondence to Pierre F. L. Maxted.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary References, Supplementary Tables 1-5 and Supplementary Figures 1-5. (PDF 1766 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maxted, P., Serenelli, A., Miglio, A. et al. Multi-periodic pulsations of a stripped red-giant star in an eclipsing binary system. Nature 498, 463–465 (2013).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing