Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structure of the human smoothened receptor bound to an antitumour agent


The smoothened (SMO) receptor, a key signal transducer in the hedgehog signalling pathway, is responsible for the maintenance of normal embryonic development and is implicated in carcinogenesis. It is classified as a class frizzled (class F) G-protein-coupled receptor (GPCR), although the canonical hedgehog signalling pathway involves the GLI transcription factors and the sequence similarity with class A GPCRs is less than 10%. Here we report the crystal structure of the transmembrane domain of the human SMO receptor bound to the small-molecule antagonist LY2940680 at 2.5 Å resolution. Although the SMO receptor shares the seven-transmembrane helical fold, most of the conserved motifs for class A GPCRs are absent, and the structure reveals an unusually complex arrangement of long extracellular loops stabilized by four disulphide bonds. The ligand binds at the extracellular end of the seven-transmembrane-helix bundle and forms extensive contacts with the loops.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Overall structure of the human SMO receptor 7TM domain in complex with LY2940680.
Figure 2: Comparison of the 7TM bundle of the SMO receptor with class A GPCRs.
Figure 3: Ligand-binding pocket for LY2940680.
Figure 4: The structure of the ECD linker domain and ECLs.
Figure 5: Comparison of ECL2 of the SMO receptor with class A GPCRs.
Figure 6: Structural insight for the FZD receptors on the basis of their sequence homology with the SMO receptor.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The coordinates and the structure factors have been deposited in the Protein Data Bank under the accession code 4JKV.


  1. 1

    Ingham, P. W. & McMahon, A. P. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059–3087 (2001)

    CAS  Article  Google Scholar 

  2. 2

    Robbins, D. J., Fei, D. L. & Riobo, N. A. The Hedgehog signal transduction network. Sci. Signal. 5, re6 (2012)

    Article  Google Scholar 

  3. 3

    Marigo, V., Davey, R. A., Zuo, Y., Cunningham, J. M. & Tabin, C. J. Biochemical evidence that patched is the Hedgehog receptor. Nature 384, 176–179 (1996)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Stone, D. M. et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384, 129–134 (1996)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Taipale, J., Cooper, M. K., Maiti, T. & Beachy, P. A. Patched acts catalytically to suppress the activity of Smoothened. Nature 418, 892–896 (2002)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Corbit, K. C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005)

    CAS  ADS  Article  Google Scholar 

  7. 7

    Klaus, A. & Birchmeier, W. Wnt signalling and its impact on development and cancer. Nature Rev. Cancer 8, 387–398 (2008)

    CAS  Article  Google Scholar 

  8. 8

    Huang, H. C. & Klein, P. S. The Frizzled family: receptors for multiple signal transduction pathways. Genome Biol. 5, 234 (2004)

    Article  Google Scholar 

  9. 9

    Schulte, G. International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol. Rev. 62, 632–667 (2010)

    CAS  Article  Google Scholar 

  10. 10

    Bhanot, P. et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225–230 (1996)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Janda, C. Y., Waghray, D., Levin, A. M., Thomas, C. & Garcia, K. C. Structural basis of Wnt recognition by Frizzled. Science 337, 59–64 (2012)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Katritch, V., Cherezov, V. & Stevens, R. C. Structure-function of the G protein-coupled receptor superfamily. Annu Rev. Pharmacol. Toxicol. 53, 531–556 (2013)

    CAS  Article  Google Scholar 

  13. 13

    Foord, S. M. et al. International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol. Rev. 57, 279–288 (2005)

    CAS  Article  Google Scholar 

  14. 14

    Ayers, K. L. & Therond, P. P. Evaluating Smoothened as a G-protein-coupled receptor for Hedgehog signalling. Trends Cell Biol. 20, 287–298 (2010)

    CAS  Article  Google Scholar 

  15. 15

    Chen, W. et al. Activity-dependent internalization of Smoothened mediated by β-arrestin 2 and GRK2. Science 306, 2257–2260 (2004)

    CAS  ADS  Article  Google Scholar 

  16. 16

    Riobo, N. A., Saucy, B., Dilizio, C. & Manning, D. R. Activation of heterotrimeric G proteins by Smoothened. Proc. Natl Acad. Sci. USA 103, 12607–12612 (2006)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Polizio, A. H. et al. Heterotrimeric Gi proteins link Hedgehog signaling to activation of Rho small GTPases to promote fibroblast migration. J. Biol. Chem. 286, 19589–19596 (2011)

    CAS  Article  Google Scholar 

  18. 18

    Heretsch, P., Tzagkaroulaki, L. & Giannis, A. Modulators of the hedgehog signaling pathway. Bioorg. Med. Chem. 18, 6613–6624 (2010)

    CAS  Article  Google Scholar 

  19. 19

    Bender, M. H. et al. Identification and characterization of a novel smoothened antagonist for the treatment of cancer with deregulated hedgehog signaling. Cancer Res. 71, 2819 (2011)

    Google Scholar 

  20. 20

    Hipskind, P. A., Patel, B. K. & Wilson, T. Disubstituted phthalazine hedgehog pathway antagonists. US patent 8,273,742 B2. (2010)

  21. 21

    Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Wu, B. et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330, 1066–1071 (2010)

    CAS  ADS  Article  Google Scholar 

  23. 23

    Zhao, Y., Tong, C. & Jiang, J. Hedgehog regulates smoothened activity by inducing a conformational switch. Nature 450, 252–258 (2007)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Ballesteros, J. A. & Weinstein, H. in Methods in Neurosciences Vol. 25 (ed. Sealfon, S. C.) 366–428 (Academic, 1995)

    Google Scholar 

  25. 25

    Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011)

    CAS  ADS  Article  Google Scholar 

  26. 26

    Yauch, R. L. et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326, 572–574 (2009)

    CAS  ADS  Article  Google Scholar 

  27. 27

    Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Carroll, C. E., Marada, S., Stewart, D. P., Ouyang, J. X. & Ogden, S. K. The extracellular loops of Smoothened play a regulatory role in control of Hedgehog pathway activation. Development 139, 612–621 (2012)

    CAS  Article  Google Scholar 

  29. 29

    Granier, S. et al. Structure of the δ-opioid receptor bound to naltrindole. Nature 485, 400–404 (2012)

    CAS  ADS  Article  Google Scholar 

  30. 30

    Manglik, A. et al. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485, 321–326 (2012)

    CAS  ADS  Article  Google Scholar 

  31. 31

    Thompson, A. A. et al. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485, 395–399 (2012)

    CAS  ADS  Article  Google Scholar 

  32. 32

    White, J. F. et al. Structure of the agonist-bound neurotensin receptor. Nature 490, 508–513 (2012)

    CAS  ADS  Article  Google Scholar 

  33. 33

    Wu, H. et al. Structure of the human κ-opioid receptor in complex with JDTic. Nature 485, 327–332 (2012)

    CAS  ADS  Article  Google Scholar 

  34. 34

    Zhang, C. et al. High-resolution crystal structure of human protease-activated receptor 1. Nature 492, 387–392 (2012)

    CAS  ADS  Article  Google Scholar 

  35. 35

    Xie, J. et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90–92 (1998)

    CAS  ADS  Article  Google Scholar 

  36. 36

    Umbhauer, M. et al. The C-terminal cytoplasmic Lys-Thr-X-X-X-Trp motif in frizzled receptors mediates Wnt/β-catenin signalling. EMBO J. 19, 4944–4954 (2000)

    CAS  Article  Google Scholar 

  37. 37

    Wong, H. C. et al. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol. Cell 12, 1251–1260 (2003)

    CAS  Article  Google Scholar 

  38. 38

    Krishnan, A., Almen, M. S., Fredriksson, R. & Schioth, H. B. The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi. PLoS ONE 7, e29817 (2012)

    CAS  ADS  Article  Google Scholar 

  39. 39

    Schwartz, T. W. & Rosenkilde, M. M. Is there a ‘lock’ for all agonist ‘keys’ in 7TM receptors? Trends Pharmacol. Sci. 17, 213–216 (1996)

    CAS  Article  Google Scholar 

  40. 40

    Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nature Protocols 4, 706–731 (2009)

    CAS  Article  Google Scholar 

  41. 41

    Cherezov, V., Peddi, A., Muthusubramaniam, L., Zheng, Y. F. & Caffrey, M. A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases. Acta Crystallogr. D 60, 1795–1807 (2004)

    Article  Google Scholar 

  42. 42

    Cherezov, V. et al. Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 μm size X-ray synchrotron beam. J. R. Soc. Interface 6 (suppl. 5). S587–S597 (2009)

    CAS  Article  Google Scholar 

  43. 43

    Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    CAS  Article  Google Scholar 

  44. 44

    Terwilliger, T. C. et al. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr. D 65, 582–601 (2009)

    CAS  Article  Google Scholar 

  45. 45

    Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2. 0. Acta Crystallogr. D 59, 2023–2030 (2003)

    CAS  Article  Google Scholar 

  46. 46

    Terwilliger, T. C. et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D 64, 61–69 (2008)

    CAS  Article  Google Scholar 

  47. 47

    Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    CAS  Article  Google Scholar 

  48. 48

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010)

    CAS  Article  Google Scholar 

  49. 49

    Rominger, C. M. et al. Evidence for allosteric interactions of antagonist binding to the Smoothened receptor. J. Pharmacol. Exp. Ther. 329, 995–1005 (2009)

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Institutes of Health Common Fund grant P50 GM073197 for technology development (V.C. and R.C.S.), PSI:Biology grant U54 GM094618 for biological studies and structure production (target GPCR-131) (V.K., V.C. and R.C.S.); F32 DK088392 (F.Y.S.); R01 MH61887, U19 MH82441, R01 DA27170 and the NIMH Psychoactive Drug Screening Program (X.-P.H. and B.L.R.) and the Michael Hooker Chair of Pharmacology (B.L.R.). We thank J. Velasquez for help with molecular biology, T. Trinh and M. Chu for help with baculovirus expression, K. Kadyshevskaya for assistance with figure preparation, A. Walker for assistance with manuscript preparation, D. Wacker for assistance with SAD data collection and processing and J. Smith, R. Fischetti and N. Sanishvili for assistance in development and use of the minibeam and beamtime at beamline 23-ID at the Advanced Photon Source, which is supported by National Cancer Institute grant Y1-CO-1020 and National Institute of General Medical Sciences grant Y1-GM-1104.

Author information




C.W. designed and made the constructs, purified and crystallized the receptor in LCP, optimized crystallization conditions, grew crystals for data collection, assisted with crystal collection and heavy-atom soaking experiment, collected the diffraction data and prepared the manuscript. H.W. performed baculovirus expression of the receptor, purified the receptor, optimized crystallization conditions and prepared the manuscript. V.K. prepared the manuscript. G.W.H. solved and refined the structure and assisted with preparation of the manuscript. X.-P.H. performed the radioligand binding assay. W.L. assisted with data collection. F.Y.S. provided material and conditions for heavy-atom soaking experiment. B.L.R. supervised the radioligand binding experiment and assisted with preparing the manuscript. V.C. collected crystals, performed the heavy-atom soaking experiment, collected and processed diffraction data and assisted with preparation of the manuscript. R.C.S. was responsible for the overall project strategy and management and wrote the manuscript.

Corresponding author

Correspondence to Raymond C. Stevens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1, Supplementary Figures 1-11 and Supplementary references. (PDF 1934 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, C., Wu, H., Katritch, V. et al. Structure of the human smoothened receptor bound to an antitumour agent. Nature 497, 338–343 (2013).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing