Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Control of angiogenesis by AIBP-mediated cholesterol efflux


Cholesterol is a structural component of the cell and is indispensable for normal cellular function, although its excess often leads to abnormal proliferation, migration, inflammatory responses and/or cell death. To prevent cholesterol overload, ATP-binding cassette (ABC) transporters mediate cholesterol efflux from the cells to apolipoprotein A-I (apoA-I) and the apoA-I-containing high-density lipoprotein (HDL)1,2,3. Maintaining efficient cholesterol efflux is essential for normal cellular function4,5,6. However, the role of cholesterol efflux in angiogenesis and the identity of its local regulators are poorly understood. Here we show that apoA-I binding protein (AIBP) accelerates cholesterol efflux from endothelial cells to HDL and thereby regulates angiogenesis. AIBP- and HDL-mediated cholesterol depletion reduces lipid rafts, interferes with VEGFR2 (also known as KDR) dimerization and signalling and inhibits vascular endothelial growth factor-induced angiogenesis in vitro and mouse aortic neovascularization ex vivo. Notably, Aibp, a zebrafish homologue of human AIBP, regulates the membrane lipid order in embryonic zebrafish vasculature and functions as a non-cell-autonomous regulator of angiogenesis. aibp knockdown results in dysregulated sprouting/branching angiogenesis, whereas forced Aibp expression inhibits angiogenesis. Dysregulated angiogenesis is phenocopied in Abca1 (also known as Abca1a) Abcg1-deficient embryos, and cholesterol levels are increased in Aibp-deficient and Abca1 Abcg1-deficient embryos. Our findings demonstrate that secreted AIBP positively regulates cholesterol efflux from endothelial cells and that effective cholesterol efflux is critical for proper angiogenesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Role of AIBP in cholesterol efflux from endothelial cells and in vitro angiogenesis.
Figure 2: Effect of AIBP on HUVEC lipid rafts, VEGFR2 localization, dimerization and signalling.
Figure 3: Effect of Aibp deficiency on zebrafish cholesterol, membrane lipid order, Vegfr2 signalling and angiogenesis.
Figure 4: Effect of Aibp and Abca1 Abcg1 deficiency on zebrafish angiogenesis.


  1. 1

    Bodzioch, M. et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nature Genet. 22, 347–351 (1999)

    CAS  PubMed  Google Scholar 

  2. 2

    Rust, S. et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nature Genet. 22, 352–355 (1999)

    CAS  PubMed  Google Scholar 

  3. 3

    Klucken, J. et al. ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport. Proc. Natl Acad. Sci. USA 97, 817–822 (2000)

    ADS  CAS  PubMed  Google Scholar 

  4. 4

    Yvan-Charvet, L. et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689–1693 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Armstrong, A. J., Gebre, A. K., Parks, J. S. & Hedrick, C. C. ATP-binding cassette transporter G1 negatively regulates thymocyte and peripheral lymphocyte proliferation. J. Immunol. 184, 173–183 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Bensinger, S. J. et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134, 97–111 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Ritter, M. et al. Cloning and characterization of a novel apolipoprotein A-I binding protein, AI-BP, secreted by cells of the kidney proximal tubules in response to HDL or apoA-I. Genomics 79, 693–702 (2002)

    CAS  PubMed  Google Scholar 

  8. 8

    Jha, K. N. et al. Biochemical and structural characterization of apolipoprotein A-I binding protein, a novel phosphoprotein with a potential role in sperm capacitation. Endocrinology 149, 2108–2120 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Stefulj, J. et al. Human endothelial cells of the placental barrier efficiently deliver cholesterol to the fetal circulation via ABCA1 and ABCG1. Circ. Res. 104, 600–608 (2009)

    CAS  PubMed  Google Scholar 

  10. 10

    Terasaka, N. et al. ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet. J. Clin. Invest. 118, 3701–3713 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Fessler, M. B. & Parks, J. S. Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signaling. J. Immunol. 187, 1529–1535 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Mendez, A. J. et al. Membrane lipid domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway. J. Biol. Chem. 276, 3158–3166 (2001)

    CAS  PubMed  Google Scholar 

  13. 13

    Murphy, A. J. et al. High-density lipoprotein reduces the human monocyte inflammatory response. Arterioscler. Thromb. Vasc. Biol. 28, 2071–2077 (2008)

    CAS  PubMed  Google Scholar 

  14. 14

    Noghero, A. et al. Liver X receptor activation reduces angiogenesis by impairing lipid raft localization and signaling of vascular endothelial growth factor receptor-2. Arterioscler. Thromb. Vasc. Biol. 32, 2280–2288 (2012)

    CAS  PubMed  Google Scholar 

  15. 15

    Oshikawa, J. et al. Novel role of p66Shc in ROS-dependent VEGF signaling and angiogenesis in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 302, H724–H732 (2012)

    CAS  PubMed  Google Scholar 

  16. 16

    Ikeda, S. et al. Novel role of ARF6 in vascular endothelial growth factor-induced signaling and angiogenesis. Circ. Res. 96, 467–475 (2005)

    CAS  PubMed  Google Scholar 

  17. 17

    Liao, W. x. et al. Compartmentalizing VEGF-induced ERK2/1 signaling in placental artery endothelial cell caveolae: a paradoxical role of caveolin-1 in placental angiogenesis in vitro. Mol. Endocrinol. 23, 1428–1444 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Eichmann, A. & Simons, M. VEGF signaling inside vascular endothelial cells and beyond. Curr. Opin. Cell Biol. 24, 188–193 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Lawson, N. D. & Weinstein, B. M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev. Biol. 248, 307–318 (2002)

    CAS  PubMed  Google Scholar 

  20. 20

    Torres-Vázquez, J. et al. Semaphorin-plexin signaling guides patterning of the developing vasculature. Dev. Cell 7, 117–123 (2004)

    PubMed  Google Scholar 

  21. 21

    Dean, M. & Annilo, T. Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu. Rev. Genomics Hum. Genet. 6, 123–142 (2005)

    CAS  PubMed  Google Scholar 

  22. 22

    Archer, A. et al. Transcriptional activity and developmental expression of liver X receptor (lxr) in Zebrafish. Dev. Dyn. 237, 1090–1098 (2008)

    CAS  PubMed  Google Scholar 

  23. 23

    Whetzel, A. M. et al. ABCG1 deficiency in mice promotes endothelial activation and monocyte–endothelial interactions. Arterioscler. Thromb. Vasc. Biol. 30, 809–817 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Avraham-Davidi, I. et al. ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1. Nature Med. 18, 967–973 (2012)

    CAS  PubMed  Google Scholar 

  25. 25

    Carmona, G. et al. Role of the small GTPase Rap1 for integrin activity regulation in endothelial cells and angiogenesis. Blood 113, 488–497 (2009)

    CAS  PubMed  Google Scholar 

  26. 26

    Catanzariti, A. M., Soboleva, T. A., Jans, D. A., Board, P. G. & Baker, R. T. An efficient system for high-level expression and easy purification of authentic recombinant proteins. Protein Sci. 13, 1331–1339 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    O’Connell, B. J. Cellular physiology of cholesterol efflux in vascular endothelial cells. Circulation 110, 2881–2888 (2004)

    PubMed  Google Scholar 

  28. 28

    Fang, L. et al. Oxidized cholesteryl esters and phospholipids in zebrafish larvae fed a high cholesterol diet: macrophage binding and activation. J. Biol. Chem. 285, 32343–32351 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Gao, F. et al. L-5F, an apolipoprotein A-I mimetic, inhibits tumor angiogenesis by suppressing VEGF/basic FGF signaling pathways. Integr. Biol. 3, 479–489 (2011)

    CAS  Google Scholar 

  30. 30

    Bellacen, K. & Lewis, E. C. Aortic ring assay. J. Vis. Exp. 33, 1564 (2009)

    Google Scholar 

  31. 31

    Bolte, S. & Cordelieres, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232 (2006)

    MathSciNet  CAS  PubMed  Google Scholar 

  32. 32

    Chung, T. W. et al. Ganglioside GM3 inhibits VEGF/VEGFR-2-mediated angiogenesis: direct interaction of GM3 with VEGFR-2. Glycobiology 19, 229–239 (2009)

    CAS  PubMed  Google Scholar 

  33. 33

    Chi, N. C. et al. Foxn4 directly regulates tbx2b expression and atrioventricular canal formation. Genes Dev. 22, 734–739 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio) 5th edn (Univ. of Oregon Press, 2007)

    Google Scholar 

  35. 35

    Stoletov, K. et al. Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circ. Res. 104, 952–960 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Owen, D. M., Rentero, C., Magenau, A., Abu-Siniyeh, A. & Gaus, K. Quantitative imaging of membrane lipid order in cells and organisms. Nature Protocols 7, 24–35 (2012)

    CAS  Google Scholar 

  37. 37

    Gaus, K., Le Lay, S., Balasubramanian, N. & Schwartz, M. A. Integrin-mediated adhesion regulates membrane order. J. Cell Biol. 174, 725–734 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Thisse, C. & Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nature Protocols 3, 59–69 (2008)

    CAS  PubMed  Google Scholar 

  39. 39

    Siekmann, A. F. & Lawson, N. D. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445, 781–784 (2007)

    ADS  CAS  PubMed  Google Scholar 

  40. 40

    Lawson, N. D. et al. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128, 3675–3683 (2001)

    CAS  PubMed  Google Scholar 

  41. 41

    Jowett, T. Analysis of protein and gene expression. Methods Cell Biol. 59, 63–85 (1998)

    Google Scholar 

  42. 42

    Schwend, T., Loucks, E. J., Snyder, D. & Ahlgren, S. C. Requirement of Npc1 and availability of cholesterol for early embryonic cell movements in zebrafish. J. Lipid Res. 52, 1328–1344 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank D. Traver, N. Chi, J. Witztum, R. Klemke, D. Yelon, T. Handel, K. Stoletov, W. Clements, C. Pouget, Z. Garavito-Aguilar, A. Ablooglu, R. Zhang, X. Yang, M. Angert, K. Pestonjamasp and J. Santini (University of California, San Diego), C. Hedrick, K. Ley, D. Sag, P. Sundd and A. Wu (La Jolla Institute for Allergy and Immunology), S. Trzaska (New York University), S. J. Du (University of Maryland), B. Schmid and C. Haass (Ludwig-Maximilians-University München), D. Owen and A. Magenau (University of New South Wales), A. Siekmann (Max Planck Institute for Molecular Biomedicine) and C. Binder (Medical University of Vienna) for discussions, technical assistance and/or for providing reagents and access to equipment for this study. The project was supported by the NIH grants HL093767 (Y.I.M.), HL055798 (Y.I.M.) and HL114734 (L.F.), and the fellowship 18FT-0137 from the UC Tobacco-Related Disease Program (L.F.), as well as the UCSD Neuroscience Microscopy Facility Grant P30 NS047101. The authors declare no conflicts of interests.

Author information




L.F. and Y.I.M. conceived the project, designed the experiments and wrote the manuscript. J.T.-V. made important intellectual contributions and helped revise the manuscript. L.F. performed the majority of the experiments. S.-H.C., J.S.B., C.L., F.A., F.U., P.W., A.T., E.D., J.P., A.C.L. performed experiments and/or provided research assistance.

Corresponding author

Correspondence to Yury I. Miller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-28. (PDF 4139 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fang, L., Choi, SH., Baek, J. et al. Control of angiogenesis by AIBP-mediated cholesterol efflux. Nature 498, 118–122 (2013).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing