Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pif1 family helicases suppress genome instability at G-quadruplex motifs

Abstract

The Saccharomyces cerevisiae Pif1 helicase is the prototypical member of the Pif1 DNA helicase family, which is conserved from bacteria to humans. Here we show that exceptionally potent G-quadruplex unwinding is conserved among Pif1 helicases. Moreover, Pif1 helicases from organisms separated by more than 3 billion years of evolution suppressed DNA damage at G-quadruplex motifs in yeast. The G-quadruplex-induced damage generated in the absence of Pif1 helicases led to new genetic and epigenetic changes. Furthermore, when expressed in yeast, human PIF1 suppressed both G-quadruplex-associated DNA damage and telomere lengthening.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pif1 preferentially binds G4 DNA.
Figure 2: Pif1 helicases preferentially unwind G4 structures.
Figure 3: Effects of G4 motifs on GCRs.
Figure 4: Pif1 family helicases suppress G4-induced GCR events in pif1-m2 rrm3Δ+G4 cells.
Figure 5: Mechanism of CGE silencing and effect of Pif1 helicases on telomere length.

Similar content being viewed by others

References

  1. Bochman, M. L., Paeschke, K. & Zakian, V. A. DNA secondary structures: stability and function of G-quadruplex structures. Nature Rev. Genet. 13, 770–780 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. Boulé, J.-B., Vega, L. & Zakian, V. The Yeast Pif1p helicase removes telomerase from DNA. Nature 438, 57–61 (2005)

    Article  ADS  PubMed  Google Scholar 

  3. Schulz, V. P. & Zakian, V. A. The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76, 145–155 (1994)

    Article  CAS  PubMed  Google Scholar 

  4. Zhou, J.-Q., Monson, E. M., Teng, S.-C., Schulz, V. P. & Zakian, V. A. The Pif1p helicase, a catalytic inhibitor of telomerase lengthening of yeast telomeres. Science 289, 771–774 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Myung, K., Chen, C. & Kolodner, R. D. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411, 1073–1076 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Paeschke, K., Capra, J. A. & Zakian, V. A. DNA replication through G–quadruplex motifs Is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145, 678–691 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lopes, J. et al. G–quadruplex-induced instability during leading-strand replication. EMBO J. 30, 4033–4046 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ivessa, A. S., Zhou, J.-Q. & Zakian, V. A. The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100, 479–489 (2000)

    Article  CAS  PubMed  Google Scholar 

  9. Ivessa, A. S. et al. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol. Cell 12, 1525–1536 (2003)

    Article  CAS  PubMed  Google Scholar 

  10. Fachinetti, D. et al. Replication termination at eukaryotic chromosomes is mediated by Top2 and occurs at genomic loci containing pausing elements. Mol. Cell 39, 595–605 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bochman, M. L., Sabouri, N. & Zakian, V. A. Unwinding the functions of the Pif1 family helicases. DNA Repair (Amst.) 9, 237–249 (2010)

    Article  CAS  Google Scholar 

  12. Chisholm, K. M. et al. A genomewide screen for suppressors of Alu-mediated rearrangements reveals a role for PIF1. PLoS ONE 7, e30748 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lahaye, A., Leterme, S. & Foury, F. PIF1 DNA helicase from Saccharomyces cerevisiae. Biochemical characterization of the enzyme. J. Biol. Chem. 268, 26155–26161 (1993)

    Article  CAS  PubMed  Google Scholar 

  14. Boulé, J. B. & Zakian, V. A. The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates. Nucleic Acids Res. 35, 5809–5818 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Bochman, M. L., Judge, C. P. & Zakian, V. A. The Pif1 family in prokaryotes: what are our helicases doing in your bacteria? Mol. Biol. Cell 22, 1955–1959 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cejka, P. & Kowalczykowski, S. C. The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorous DNA helicase that preferentially unwinds holliday junctions. J. Biol. Chem. 285, 8290–8301 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mohaghegh, P., Karow, J. K., Brosh Jr, R. M., Bohr Jr, V. A. & Hickson, I. D. The Bloom’s and Werne’s syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res. 29, 2843–2849 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmidt, K. H., Pennaneach, V., Putnam, C. D. & Kolodner, R. D. Analysis of gross-chromosomal rearrangements in Saccharomyces cerevisiae. Methods Enzymol. 409, 462–476 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. Chen, C. & Kolodner, R. D. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nature Genet. 23, 81–85 (1999)

    Article  CAS  PubMed  Google Scholar 

  20. Azvolinsky, A., Giresi, P., Lieb, J. & Zakian, V. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol. Cell 34, 722–734 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smith, S. et al. Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 101, 9039–9044 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762 (1990)

    Article  CAS  PubMed  Google Scholar 

  23. Baur, J. A., Zou, Y., Shay, J. W. & Wright, W. E. Telomere position effect in human cells. Science 292, 2075–2077 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Mondoux, M. & Zakian, V. in Telomeres 2nd edn (eds de Lange, T., Lundblad, V. & Blackburn, E. H. ) 261–316 (CSHL, 2005)

    Google Scholar 

  25. Piazza, A. et al. Stimulation of gross chromosomal rearrangements by the human CEB1 and CEB25 minisatellites in Saccharomyces cerevisiae depends on G-quadruplexes or Cdc13. PLoS Genet. 8, e1003033 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aparicio, O. M., Billington, B. L. & Gottschling, D. E. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66, 1279–1287 (1991)

    Article  CAS  PubMed  Google Scholar 

  27. Sarkies, P., Reams, C., Simpson, L. J. & Sale, J. E. Epigenetic instability due to defective replication of structured DNA. Mol. Cell 40, 703–713 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ivessa, A. S., Zhou, J.-Q., Schulz, V. P., Monson, E. M. & Zakian, V. A. Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and sub-telomeric DNA. Genes Dev. 16, 1383–1396 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pinter, S. F., Aubert, S. D. & Zakian, V. A. The Schizosaccharomyces pombe Pfh1p DNA helicase is essential for the maintenance of nuclear and mitochondrial DNA. Mol. Cell. Biol. 28, 6594–6608 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harmon, F. G. & Kowalczykowski, S. C. RecQ helicase, in concert with RecA and SSB proteins, initiates and disrupts DNA recombination. Genes Dev. 12, 1134–1144 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Capra, J. A., Paeschke, K., Singh, M. & Zakian, V. A. G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. PLOS Comput. Biol. 6, e1000861 (2010)

    Article  ADS  MathSciNet  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bachrati, C. Z. & Hickson, I. D. Analysis of the DNA unwinding activity of RecQ family helicases. Methods Enzymol. 409, 86–100 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. Wong, I. & Lohman, T. M. A double-filter method for nitrocellulose-filter binding: application to protein-nucleic acid interactions. Proc. Natl Acad. Sci. USA 90, 5428–5432 (1993)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brosh, R. M., Jr, Opresko, P. L. & Bohr, V. A. Enzymatic mechanism of the WRN helicase/nuclease. Methods Enzymol. 409, 52–85 (2006)

    Article  CAS  PubMed  Google Scholar 

  36. Putnam, C. D. & Kolodner, R. D. Determination of gross chromosomal rearrangement rates. Cold Spring Harbor Protoc. 2010, pdb.prot5492 (2010)

    Article  Google Scholar 

  37. Hall, B. M., Ma, C. X., Liang, P. & Singh, K. K. Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria–Delbruck fluctuation analysis. Bioinformatics 25, 1564–1565 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heid, C. A., Stevens, J., Livak, K. J. & Williams, P. M. Real time quantitative PCR. Genome Res. 6, 986–994 (1996)

    Article  CAS  PubMed  Google Scholar 

  39. Azvolinsky, A., Dunaway, S., Torres, J., Bessler, J. & Zakian, V. A. The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. Genes Dev. 20, 3104–3116 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gueldener, U., Heinisch, J., Koehler, G. J., Voss, D. & Hegemann, J. H. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 30, e23 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998)

    CAS  PubMed  Google Scholar 

  42. Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. Kushnirov, V. V. Rapid and reliable protein extraction from yeast. Yeast 16, 857–860 (2000)

    Article  CAS  PubMed  Google Scholar 

  44. Runge, K. W. & Zakian, V. A. Introduction of extra telomeric DNA sequences into Saccharomyces cerevisiae results in telomere elongation. Mol. Cell. Biol. 9, 1488–1497 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. B. Boule for early work on S. cerevisiae Pif1 biochemistry, P. Opresko for the gift of purified human WRN, E. Allen-Vercoe, K. Bidle, C. Parker, R. Johnson, H. L. Ayala-del-Rio and E. Sockett for materials and for cloning non-yeast Pif1 helicases, and M. Platts for multiplex PCR and Southern analysis methods to characterize GCR clones. We acknowledge financial support from the National Institutes of Health (V.A.Z., S.C.K.), National Science Foundation (K.L.F.), DFG and NJCCR (K.P.) and American Cancer Society (M.L.B.).

Author information

Authors and Affiliations

Authors

Contributions

K.P. and M.L.B. purified Pif1 helicases and performed biochemical and GCR experiments; P.D.G. and M.L.B. did the silencing experiments; P.C. purified Sgs1; S.C.K. aided in the analysis and interpretation of the biochemistry and provided purified E. coli RecQ; K.L.F. aided in the analysis and interpretation of GCR events; K.P., M.L.B. and V.A.Z. designed the study, analysed data and wrote the manuscript. K.P. and M.L.B. contributed equally. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Virginia A. Zakian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-7, Supplementary Tables 1-8 and Supplementary References. (PDF 792 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paeschke, K., Bochman, M., Garcia, P. et al. Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497, 458–462 (2013). https://doi.org/10.1038/nature12149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12149

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing