Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide

Abstract

The functions of G-protein-coupled receptors (GPCRs) are primarily mediated and modulated by three families of proteins: the heterotrimeric G proteins, the G-protein-coupled receptor kinases (GRKs) and the arrestins1. G proteins mediate activation of second-messenger-generating enzymes and other effectors, GRKs phosphorylate activated receptors2, and arrestins subsequently bind phosphorylated receptors and cause receptor desensitization3. Arrestins activated by interaction with phosphorylated receptors can also mediate G-protein-independent signalling by serving as adaptors to link receptors to numerous signalling pathways4. Despite their central role in regulation and signalling of GPCRs, a structural understanding of β-arrestin activation and interaction with GPCRs is still lacking. Here we report the crystal structure of β-arrestin-1 (also called arrestin-2) in complex with a fully phosphorylated 29-amino-acid carboxy-terminal peptide derived from the human V2 vasopressin receptor (V2Rpp). This peptide has previously been shown to functionally and conformationally activate β-arrestin-1 (ref. 5). To capture this active conformation, we used a conformationally selective synthetic antibody fragment (Fab30) that recognizes the phosphopeptide-activated state of β-arrestin-1. The structure of the β-arrestin-1–V2Rpp–Fab30 complex shows marked conformational differences in β-arrestin-1 compared to its inactive conformation. These include rotation of the amino- and carboxy-terminal domains relative to each other, and a major reorientation of the ‘lariat loop’ implicated in maintaining the inactive state of β-arrestin-1. These results reveal, at high resolution, a receptor-interacting interface on β-arrestin, and they indicate a potentially general molecular mechanism for activation of these multifunctional signalling and regulatory proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fab30 specifically recognizes and stabilizes an active state of β-arrestin-1.
Figure 2: Conformational changes associated with β-arrestin-1 activation.
Figure 3: V2Rpp interactions with β-arrestin-1.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates and structure factors for the b-arrestin-1–V2Rpp– Fab30 complex are deposited in the Protein Data Bank under accession code 4JQI.

References

  1. Pierce, K. L., Premont, R. T. & Lefkowitz, R. J. Seven-transmembrane receptors. Nature Rev. Mol. Cell Biol. 3, 639–650 (2002)

    Article  CAS  Google Scholar 

  2. Hepler, J. R. & Gilman, A. G. G proteins. Trends Biochem. Sci. 17, 383–387 (1992)

    Article  CAS  Google Scholar 

  3. Freedman, N. J. & Lefkowitz, R. J. Desensitization of G protein-coupled receptors. Recent Prog. Horm. Res. 51, 319–351; discussion. 352–313 (1996)

  4. Lefkowitz, R. J. & Shenoy, S. K. Transduction of receptor signals by β-arrestins. Science 308, 512–517 (2005)

    Article  CAS  ADS  Google Scholar 

  5. Nobles, K. N., Guan, Z., Xiao, K., Oas, T. G. & Lefkowitz, R. J. The active conformation of β-arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of β-arrestins1 and -2. J. Biol. Chem. 282, 21370–21381 (2007)

    Article  CAS  Google Scholar 

  6. Gurevich, V. V. & Gurevich, E. V. The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol. Ther. 110, 465–502 (2006)

    Article  CAS  Google Scholar 

  7. Xiao, K., Shenoy, S. K., Nobles, K. & Lefkowitz, R. J. Activation-dependent conformational changes in β-arrestin 2. J. Biol. Chem. 279, 55744–55753 (2004)

    Article  CAS  Google Scholar 

  8. Zhuang, T. et al. Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Proc. Natl Acad. Sci. USA 110, 942–947 (2013)

    Article  CAS  ADS  Google Scholar 

  9. Rasmussen, S. G. F. et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383–387 (2007)

    Article  CAS  ADS  Google Scholar 

  10. Rasmussen, S. G. F. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011)

    Article  CAS  ADS  Google Scholar 

  11. Fellouse, F. A. et al. High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J. Mol. Biol. 373, 924–940 (2007)

    Article  CAS  Google Scholar 

  12. Oakley, R. H., Laporte, S. A., Holt, J. A., Barak, L. S. & Caron, M. G. Association of β-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J. Biol. Chem. 274, 32248–32257 (1999)

    Article  CAS  Google Scholar 

  13. De Lean, A., Stadel, J. M. & Lefkowitz, R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J. Biol. Chem. 255, 7108–7117 (1980)

    CAS  PubMed  Google Scholar 

  14. Gurevich, V. V., Pals-Rylaarsdam, R., Benovic, J. L., Hosey, M. M. & Onorato, J. J. Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity. J. Biol. Chem. 272, 28849–28852 (1997)

    Article  CAS  Google Scholar 

  15. Han, M., Gurevich, V. V., Vishnivetskiy, S. A., Sigler, P. B. & Schubert, C. Crystal structure of β-arrestin at 1.9 Å: possible mechanism of receptor binding and membrane translocation. Structure 9, 869–880 (2001)

    Article  CAS  Google Scholar 

  16. Hanson, S. M. et al. Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. Proc. Natl Acad. Sci. USA 103, 4900–4905 (2006)

    Article  CAS  ADS  Google Scholar 

  17. Vishnivetskiy, S. A. et al. An additional phosphate-binding element in arrestin molecule. Implications for the mechanism of arrestin activation. J. Biol. Chem. 275, 41049–41057 (2000)

    Article  CAS  Google Scholar 

  18. Vishnivetskiy, S. A. et al. How does arrestin respond to the phosphorylated state of rhodopsin? J. Biol. Chem. 274, 11451–11454 (1999)

    Article  CAS  Google Scholar 

  19. Palczewski, K., Buczylko, J., Imami, N. R., McDowell, J. H. & Hargrave, P. A. Role of the carboxyl-terminal region of arrestin in binding to phosphorylated rhodopsin. J. Biol. Chem. 266, 15334–15339 (1991)

    CAS  PubMed  Google Scholar 

  20. Goodman, O. B., Jr et al. β-arrestin acts as a clathrin adaptor in endocytosis of the β2-adrenergic receptor. Nature 383, 447–450 (1996)

    Article  CAS  ADS  Google Scholar 

  21. Kovoor, A., Celver, J., Abdryashitov, R. I., Chavkin, C. & Gurevich, V. V. Targeted construction of phosphorylation-independent beta-arrestin mutants with constitutive activity in cells. J. Biol. Chem. 274, 6831–6834 (1999)

    Article  CAS  Google Scholar 

  22. Vishnivetskiy, S. A., Hirsch, J. A., Velez, M. G., Gurevich, Y. V. & Gurevich, V. V. Transition of arrestin into the active receptor-binding state requires an extended interdomain hinge. J. Biol. Chem. 277, 43961–43967 (2002)

    Article  CAS  Google Scholar 

  23. Gurevich, V. V. & Gurevich, E. V. The molecular acrobatics of arrestin activation. Trends Pharmacol. Sci. 25, 105–111 (2004)

    Article  CAS  Google Scholar 

  24. Xiao, K. et al. Functional specialization of β-arrestin interactions revealed by proteomic analysis. Proc. Natl Acad. Sci. USA 104, 12011–12016 (2007)

    Article  CAS  ADS  Google Scholar 

  25. Kim, M. et al. Conformation of receptor-bound visual arrestin. Proc. Natl Acad. Sci. USA 109, 18407–18412 (2012)

    Article  CAS  ADS  Google Scholar 

  26. Sommer, M. E., Hofmann, K. P. & Heck, M. Distinct loops in arrestin differentially regulate ligand binding within the GPCR opsin. Nature Commun. 3, 995 (2012)

    Article  ADS  Google Scholar 

  27. Rizk, S. S. et al. Allosteric control of ligand-binding affinity using engineered conformation-specific effector proteins. Nature Struct. Mol. Biol. 18, 437–442 (2011)

    Article  CAS  Google Scholar 

  28. Kobilka, B. K. Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein-coupled receptor. Anal. Biochem. 231, 269–271 (1995)

    Article  CAS  Google Scholar 

  29. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Macromol. Crystallogr. A 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  30. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  31. Uysal, S. et al. Crystal structure of full-length KcsA in its closed conformation. Proc. Natl Acad. Sci. USA 106, 6644–6649 (2009)

    Article  CAS  ADS  Google Scholar 

  32. Milano, S. K., Pace, H. C., Kim, Y. M., Brenner, C. & Benovic, J. L. Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry 41, 3321–3328 (2002)

    Article  CAS  Google Scholar 

  33. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  34. Afonine, P. V., Grosse-Kunstleve, R. W. & Adams, P. D. A robust bulk-solvent correction and anisotropic scaling procedure. Acta Crystallogr. D 61, 850–855 (2005)

    Article  Google Scholar 

  35. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    Article  CAS  Google Scholar 

  36. Schrodinger, L. The PyMOL Molecular Graphics System v.1.3r1. (2010)

  37. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)

    Article  CAS  Google Scholar 

  38. Hayward, S., Kitao, A. & Berendsen, H. J. Model-free methods of analyzing domain motions in proteins from simulation: a comparison of normal mode analysis and molecular dynamics simulation of lysozyme. Proteins 27 425–437 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Capel for technical assistance and V. Ronk, D. Addison and Q. Lennon for administrative and secretarial support. We thank S. Ahn and L. Wingler for critical reading of the manuscript. We acknowledge support from the Stanford Medical Scientist Training Program and the American Heart Association (A.M.), from the National Science Foundation (A.C.K.), from the National Institutes of Health Grants NS028471 (B.K.K.), HL16037 and HL70631 (R.J.L.), GM072688 and GM087519 (A.A.K. and S.K.), HL 075443 (K.X.) and from the Mathers Foundation (B.K.K. and W.I.W.). R.I.R is supported by a post-doctoral fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–CAPES. R.J.L. is an investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

A.K.S. conceived the project, designed the Fab selection strategy, selected and characterized Fab30, established and optimized complex formation and purification conditions, prepared protein for crystallization trials and supervised the experiments related to the biochemical characterization of the complex. A.M. purified the complex, performed crystallography trials and grew crystals. A.M. and A.C.K. collected and processed diffraction data, and solved and refined the structure with supervision from W.I.W. R.I.R. assisted with advanced Fab characterization and optimized complex formation. W.-C.T. assisted with Fab selection and preliminary characterization. K.X. performed and analysed the crosslinking experiments. D.P.S. performed and analysed radioligand binding experiments. L.-Y.H. assisted with functional characterization of the complex. P.T.-S. expressed and purified the receptor. S.U., M.P., A.K., S.K. and A.A.K. generated and provided the phage display library and the screening protocol and helped with the initial phase of Fab selection. D.H. performed the comparison of the structural model with EPR data. A.K.S., A.M. and A.C.K. made figures. A.K.S., A.M., A.C.K., B.K.K. and R.J.L. wrote the manuscript. B.K.K. and R.J.L. supervised the overall research.

Corresponding authors

Correspondence to Brian K. Kobilka or Robert J. Lefkowitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-7, Supplementary Methods, Supplementary Table 1 and Supplementary References. (PDF 8781 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, A., Manglik, A., Kruse, A. et al. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497, 137–141 (2013). https://doi.org/10.1038/nature12120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12120

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing